
14 March 2002 Page 1 of 8

More threading with templates

Introduction and Linux diversion

Even before my article in Overload 31 had gone to print I’d suggested to Einar that there was

probably enough material for a second article. This falls into two broad categories, firstly improving

the presented template and re-enforcing the IOU design pattern; secondly, porting it to a UNIX

environment.

I’d always hoped to port the material to UNIX but had just never got round to it. As I don’t use UNIX

at work this meant I needed UNIX at home and as it happened by hard disc contained a Slackware

Linux installation. However, I’d never really finished the install so, after two years I was still booting

from floppy, and couldn’t get the modem to work. Just before Overload 31 arrived fate struck and my

NT set up locked me out. After re-installing NT on a new hard disc I decided to start again with

Linux and installed Red Hat Linux 5.2.

The point of telling you all this is so I can say one thing: Red Hat Linux 5.2 is easier to install than

Windows NT 4.0. Although the X-server worked fine first time my connection to Demon Internet

was more difficult and involved tracking down a few Demon specific how-to’s. So with that said back

to the main thread of this article - sorry for the pun!

All the code presented here has been tested on NT 4 and Windows 98 (from here on collectively

referred to as Win32) with Visual C++ 5.0 and on Red Hat Linux 5.2 with egcs 1.0.3 and the Posix

threads library. My main source of reference for the Posix threads was Programming with POSIX

threads by David R. Butenhof1 which I found to be both authoritative and approachable. However,

I’m not as familiar with Posix threads as I am with Win32 so if you know a better way of doing any of

this I’d like to hear from you. While I’ve tested the UNIX code presented here I’ve not had a chance

to use it in a production environment, but I have learnt a lot from writing this.

Posix

Posix is the thread library standard which is now supported by most UNIX platforms. Before the

Posix threads (pthreads for short) standard different vendors had different libraries and different

standards. Pthreads is just another library on the kernel. The library I have used was produced by

Xavier Leroy and is described as “Linux threads, a posix thread implementation.” This is supplied as

standard in the Red Hat Linux distribution and several others.

As pthreads is just a library it should be possible to implement it on top of the NT threading model.

However, I suspect this may prove more difficult in practice then theory.

14 March 2002 Page 2 of 8

Strategy

Writing platform independent code places additional requirements on the developer. Good design

and implementation practice is the best ally here. Abstracting and hiding all low-level dependencies

behind fixed interfaces both helps platform independence and layers software.

The strategy I present here emphasizes separation of interface - which should be platform independent

in the header files - from the implementation - which is necessarily platform specific and which I try

to confine to the source CXX2 files. John Lakos3 gives a tour-de-force in describing how to layer

programs and separate interface and implementation, highly recommended.

Hence one of my objectives when writing any code, and especially when writing cross platform code is

to minimise the number of macro’s and the general use of anything using a #.

Critical section

As the critical section is easier to port and sets the pattern for what is to follow I’m starting this time

by porting the critical section to Linux. First it is necessary to remove any OS specific information

from the header file. This means we can’t in-line any of our functions. Listing critical.h shows the

revised header file. Listing critical.cxx shows the implementation.

I started out with the intention of putting all code in the Accu namespace. I’m quiet taken with

namespaces at the moment and this would allow my code to compile with the code from the last

article. However, when I came to compile under egcs I got a “sorry, not implemented: namespace”

message. What surprised me was that the standard library all seems to be in the std namespace. I

assume some work around has been used here. As this article is about threads and not namespaces I

decided to kludge it with a NAME_SPACES macro!

Under Win32 threads are automatically recursive while Posix threads are not. That is to say, if a

Win32 thread enters a critical section and then attempts to enter it again it is allowed to. (As far as I

know there is no other way for a critical section to behave under Win32.) Because critical sections are

recursive threads cannot block against themselves.

However, under Posix things are different. There are four types of critical section4. For simplicity I

have used the recursive type, which has the same behaviour as Win32 critical sections. However,

should you require one of the other types it should be possible to write your own implementation

under Win32 and hide it behind the same interface provided here.

An NT critical section is an optimised mutex which can only be used among threads of the same

process. If two threads in different processes need to guard a section of code a full mutex must be

used. Pthreads does not implement the critical section optimisation, hence it is necessary to use a

mutex. Posix allows you to set various attributes on critical sections (and threads) while Microsoft

limit the choices or implement the functionality differently. For simplicity I have restricted myself to

the basic functionality.

Beyond this the CriticalSection and CriticalToken classes work exactly the same as the ones provided

in my first article; so to create a critical section you simply declare a CriticalSection object, to enter

14 March 2002 Page 3 of 8

the section declare a CriticalToken object using the critical section object as a parameter to the

constructor. To leave the critical section use scope rules to destroy the critical token.

Changing the thread template

Before porting the thread template I wish to modify it. IouThrd1.h shows what I’m calling the

IouThread. While editing my original article Einar suggested the Redeem() function and the addition

of the return type parameter. This enhances the original IOU design pattern of the template but at the

expenses of removing some of the versatility. I think there is a role for both versions of the template.

I make most use of the original template not as an IOU pattern but as a quick and easy thread

launcher.

In this version when Redeem() is called the function attempts to return a type V which is supplied as a

template parameter. If the thread has terminated the return is immediate; if the thread has yet to

completed the call blocks until there is a value to return, this makes it easier to create producer-

consumer chains.

The value type is required for Redeem() to ensure type safety in returning a value. However, simply

adding the Redeem() function to original template would causes several problems which all

contributed to my decision to create a new template:

? Why change code that works? Why add functionality which by my own admission is not always

needed or used?

? The original template allows you to orphan threads or kill them. This is not compatible with a

Redeem() function. Redeem() has no use if the thread is orphaned; while what is the effect of

Redeem() on a thread that may be killed?

? In compilation terms we hit a problem, the original template defaulted the second parameter thus

making it difficult to add a third; existing code would be broken.

There have been some other changes which are more subtle. Firstly the constructor takes an instance

of the worker object and copies it. Here I’m following STL style in using value semantics. One of the

main problems I have with the original template is managing the life times of the worker objects and

templates - this approach removes the issue altogether. However, I’m not completely happy with this.

It raises two more issues; firstly, are we sure our worker objects can be copied, indeed do we want to

copy them if the copy is an expensive operation? Secondly, and to my mind more significant, I often

make the thread template a member of some high level controller class, mentioning the worker object

directly means we must include it’s header file in the controller. This introduces a dependency that

may not logically exists between the controller and worker. If the template accepts a pointer or

reference I can use a forward declaration in the controller class and break the dependency.

There are two sides to this argument, and I’m not completely sure which is best. In truth the same

dependency problem has lead me to use pointers with the standard containers before now. If the

dependency problem causes you problems it is fairly trivial to make the IouThread accept a pointer

and access the worker through that. I would suggest that you adopt the pointer in the template and

delete it in the destructor. This would allow you to write:

14 March 2002 Page 4 of 8

IouThread<Worker, int> thread(new Worker(…));

I would advise against passing a reference as you must not only manage the life time of the worker but

also raise the possibility of someone attempting direct access to the worker.

(A quick aside here: the terms adopt and orphan are used in preference to get and set because they

imply a transfer of ownership. This should help when tracking down resource leaks.)

One option I rejected in the rework was to run the thread as soon as the constructor was done, this

would remove the need for the RunThread method. Again, this is because I typically embed several

thread templates in a controller class and I want full control of when to start them. If the constructor

started the thread I would be forced to control the life time of the controller; using this method the

controller can control the life time of the threads.

One more modification is evident to NT programmers. The CreateThread which I used but warned

against has been replaced by _beginthreadex. Richard Howells mail me to say that _beginthread

actually returned the thread handle which I wanted. While this involves some extra casting (due to

Microsoft’s function signature) it is not dangerous and actually fits in with the next item on the

agenda. However, _beginthread conveniently closes the handle for you when it thread reaches the end,

as I use this handle in Complete() I don’t want it closed if the thread has finished, I get an “invalid

handle” error. Hence I’ve used _beginthreadex which leaves the handle open for me to close – but I

must remember to close it.

Finally, I have removed some code. The comments where removed to tighten up the code up and

make this article shorter; and I’ve also had to remove the Suspend, Resume and IsTerminated

functions. In part these where removed because they have less of a role in a strict IOU pattern; but

also, I found it had to replicate their functions under Posix without adding more management code

(that will make a nice exercise for the reader!)

Example program

If you take a look at main.cxx you will find a simple model of the British economy. The main

function creates economies for England, Scotland and Wales, runs them as threads and redeems the

result to predicts the final GDP.

Under Windows you can either use IouThrd1.h which shows the changes made to the template in the

simplest way or IouThrd2.h. Linux/Posix users can only use IouThrd2.h. Apart from one include line

main.cxx is unchanged for any platform.

IouThrd2.h exposes the same interface as IouThrd.h but does not contain OS specific calls. These are

the subject of the next section.

To show the multi-threaded nature of the application at run time I decided to add a short sleep to the

worker between calculations. Once again, Win32 is at odds with the Unix world. Win32 uses a

Sleep(number of milliseconds) function, while Unix uses a sleep(number of seconds) function. I am

sure this is not the only example we will find so I’ve added the auxiliary functions in auxfuncs.h and

14 March 2002 Page 5 of 8

auxfuncs.cxx. These follow the same considerations as the critical section for splitting platform

independent interface from platform specific implementation.

Differences in threading models

NT and pthreads have a number of differences when it comes to threads. Under pthreads the overall

process will terminate when the main thread (the one which started with main(…)) terminates

regardless of how many other threads are still running – they will be terminated5. NT however, will

terminate the process only when the last thread has finished executing6.

The thread templates ignore this rather substantial difference. If this causes you a problem then

pthreads can be made to behave like NT by calling pthread_exit at the end of the main thread. This

causes the process to wait for all threads to terminate – at the expense of allowing a return value from

the main thread. AuxFuncs contains the function WaitForThreads, this can be called on either

platform, on Win32 it does nothing, on Posix it calls pthread_exit.

NT implements a detach paradigm when creating new processes but not for threads. Pthreads

implements an attached and detached paradigm for threads. Simply, if thread A is attached to thread

B then any resources used by thread B will not be reclaimed until A and B have been terminated. If B

is detached then resources are released as soon as B terminates.

When a detached pthread terminates the same thing happens. However, a thread must either be

created detached or be detached (using pthread_detach) after creation. The catch is, once the thread is

detached the creating thread has no simple means of communicating with it.

Alternatively, and the approach used here, is leave the new thread (B) attached to the creating thread

(A). When Redeem() is called the thread is joined – using pthread_join. This causes the callee (A) to

pause until the called (B) completed. The exit code from B is returned to A via the second parameter

pthread_join. Had B been detached from A it would not be possible to call pthread_join. The final

action of pthread_join before returning to A is to detach B allowing the resources to be reclaimed but

prevents any subsequent call to pthread_join.

(In NT the exit code of a thread is only available through the GetExitCodeThread function.)

Porting the Thread Template to Linux

The first problem we face here is that my previous technique won’t work. Because we have template

here I can’t separate the implementation code from the interface code in the same way I did with the

critical section; a modified approach is required.

There are four options here:

? Write another version of the template with the same signatures but use POSIX calls.

 While this is undoubtedly the simplest it mingles high level application code with the low level

system dependent code. Personally, I like to think of the OS facing functions at the bottom of the

dependency tree, I’d place the IouTemplate in the next level. This would result in platform

independent threads only where this template is used.

14 March 2002 Page 6 of 8

? Add a third parameter to the template to indicate the platform and produce partial specialisations

of the template for each platform.

 Although I would need to provide a macro which would expand to the current OS type and

probably defaulting the template to this, developers could still re-introducing platform dependence

by writing: IouTemplate<MyWorker, double, Posix>. Additionally, not all compilers have partial

template specialisation support yet.

? Provide the template signatures in the header file and export the actual code using the template

export keyword : unfortunately Microsoft don’t support this yet.

? Move the template to an abstract set of function calls and implement these differently on NT and

Linux.

You may guess that I chose the third option. The first option doesn’t fit with the strategy I outlined at

the start. The second option would lead to some rocket science C++, so it’s omission is probably a

relief to maintenance programmers everywhere!

thdfuncs.h gives the prototypes for platform independent thread functions. These represent a sub-set

of the calls available on both systems. Before describing the implementation of these in thdfuncs.cxx

we need to look at the typedefs in more detail, again we need to jump through a couple of hoops to

keep OS specific #if’s out of the header files.

Both Win32 and Posix start thread execution using a pointer to a function. Under Posix this has the

signiture:

Void* Start (void*)

But Win32 asks for:

unsigned int _stdcall Start(void *param)

To ensure that the thread template is not troubled by this significant different the platform

independent thread functions ask for a:

int Start(void*)

Under Win32 the OS specific thread functions provide a Win32 compatible start function and the

Posix functions provide a suitable Posix start function. From here we can call the user supplied,

platform neutral function. However, this means we must pass the address of the platform neutral

function to the specific function. Both Win32 and Posix only allow one void* parameter to be passed

to the start function and this is already used for an object pointer.

The solution is to bundle both the object pointer and platform neutral function pointer into another

structure (StartData) and pass this to the starter function.

Hence the following chain of events occurs: 1) user calls RunThread on the thread template, this calls

the low level CreateThread function in thrdfuncs.cxx with a pointer to it’s own platform independent

StartRun function and a pointer to the worker object; 2) CreateThread bundles both of these pointers

into a new StartData object and calls the platform specific start function with a pointer to this

structure; 3) the OS creates the thread and starts execution at the platform specific StartRunFunc

function; 4) this function now disassembles the StartData strucuture to get a pointer to the static

14 March 2002 Page 7 of 8

tempate member and a pointer to the object, it can now call the static function with the worker object;

5) the static template member can recover the type of the worker and run it’s own, non-static Run()

method; 6) when the worker completes it returns to StartFunc where the StartData object is destroyed.

Although this may sound long winded once you’ve stepped though it with a debugger it makes a lot

more sense.

An additional problem occurs when we hit the WaitForThread call. Although Win32 will keep a

thread handle open even after a thread has terminated (see the discussion above concerning

beginthreadex) Posix does not. Calling pthread_join with the id of a complete thread results in an

error. Fortunately, while Win32 creates a structured exception which may bring all our code down,

Posix simple returns and error code which we can use to imply the thread has already terminated.

Compiling

Under Win32 you must remember to use the mutli-threaded standard libraries, while under Linux you

need to include the pthread library.

Return to Critical Section

If you look closely at the Economy::Run method you will see that the CriticalSection and output is in

a scope of it’s own, which is not strictly necessary if the sleep where not present. My experiments

appear to indicate that the egcs compiler performs some kind of optimisation here, either with the

class construction and destruction or with the loop. Removing the sleep, results in the English

economy thread executing, or locking i/o at the exclusion the Scottish and Welsh threads, after which

the Scottish thread runs exclusively followed by the Welsh. My suspicion is that the compiler

optimises away the constructor and destructor calls.

Conclusion

Although I dreamt up the thread template some time ago and used it very successfully when reviewed

by others some very good point emerged. The desire incorporate these and port it to Posix set off a

chain of extensive changes but the original interface remained largely unchanged. Once again, the

worth of separating interface from implementation has been proved.

At the September ACCU conference in Oxford Steve Clamage, in an aside suggested that one day

there should be a standard C++ threading model. The difference shown here between just NT and

UNIX threads shows a clear need. However, producing a model that keeps both NT and UNIX

programmers happy (let alone Mac, BeOS, VMS… ..) may be hard work!

And finally… .

As I stated in the references with my last article the IOU pattern is used by Rogue Wave software.

While I’ve used Rogue Wave Tools++ in the past I’ve never used, or seen, their Threads++ libraries.

The April edition of the C++ Report contains a review of this library and some aspects sound similar

to what I’m describing here. If anyone has a used Threads++ and would like to compare and contrast

14 March 2002 Page 8 of 8

I’d be interested to hear - as I’m sure Einar and Jon would be if you would write the piece for

Overload.

The June 1999 issue of Dr. Dobbs contain a piece by Bob Krause on platform independent mutli-

threading. Bob looks at Win32 (MFC) threads and Macintosh threads. His approach differs in two

main ways: firstly, he attempts to avoid the lowest common denominator issue. Although I have

adopted that here for the purposes of a short article I think additional functionality could be added and

either mapped onto native functions or written afresh – see my discussion on critical secions above.

Secondly Bob uses inheritance, this I dislike because it means the worker must know more about it’s

place in life as a thread, and it can only be used as a thread. By aggregating the worker in a template

the worker is more reusable.

I’m sure my technique could be ported to the Mac but will not be rushing to volunteer to write the

article as my only experience of Mac programming was under Scheme many years ago. However,

from what I understand, the Mac only supports co-operative multi-threading, this should present an

additional challenge which would probably require more interaction between the worker and the

template.

1 Addison-Wesley 1997
2 Some Window programmers may be wonder why I use CXX instead of CPP. Historically there was

no standard C++ file extension. Some compilers used capital-C, others used CXX (imagine the X

rotated through 45 degrees) while Microsoft used CPP. The Microsoft compiler is pretty forgiving on

these things. Hopefully CXX should be generally acceptable to all.
3 Large-scale Software Engineering in C++ 1997 Addison-Wesley
4 For further information see Butenhof section 10.1.2.
5 Butenhof section 2.1
6 See Jeffrey Richter, Advanced Windows for more details on processes and threads under Windows.

(C) Allan Kelly 1999

