
TThhee RReeffaaccttoorryy,, IInncc..
7 Florida Drive. • Urbana IL 61801 • phone: (217) 344-4847 • fax: (217) 384-4458 • board@refactory.com

Title: Adaptive Object-Model Architecture: How to Build Systems That Can Dynamically

Adapt to Changing Requirements

Speaker: Joseph W. Yoder

Abstract:

Architectures that can dynamically adapt to changing requirement are sometimes called
“reflective” or “meta” architectures. We call a particular kind of reflective architecture an
“Adaptive Object-Model (AOM)” architecture. An Adaptive Object-Model is a system
that represents classes, attributes, relationships, and behavior as metadata. It is a model
based on instances rather than classes. Users change the metadata (object model) to
reflect changes to the domain model. These changes modify the system’s behavior. In
other word, it stores its Object-Model in XML files or in a database and interprets it.
Consequently, the object model is adaptive; when the descriptive information for the
object model is changed, the system immediately reflects those changes. We have noticed
that the architects of a system with Adaptive Object-Models often claim this is the best
system they have ever created, and they brag about its flexibility, power, and eloquence.
At the same time, many developers find them confusing and hard to work with. This is
due in part because the developers do not understand the architecture. This tutorial will
give a description of the Adaptive Object-Model architectural style and will make it
easier for developers to understand and build systems that need to adapt to changing
requirements.

Outline:
• Introduction
• Motivation – a few examples

o General Problem�

o General Solution

• Architectural Elements of AOM
• An Example in the Medical Domain – These are examples of the application we

developed and the framework as it evolved
• Implementation Issues
• Advantages and Disadvantages
• Other Alternatives - Related Ideas and Architectures
• Summary and Questions

Duration: Half-day

Level: Advanced

Required Experience:
A good knowledge of object concepts is required. It would be useful if participants have a
basic understanding of frameworks, though it is not necessary. A general understanding
of the GOF patterns is required. A general understanding of Analysis Patterns
(specifically knowledge levels) and Reflective Architectures can be helpful; though not
required. Specifically we will be covering Composite, TypeObject, Properties, Strategy,
Interpreter and the Builder Design Patterns along with the Party, Accountability and
Observation Analysis Patterns.

Expected Audience:
The intended audience is for those that need to build, maintain, or understand flexible
architectures that allow “power” users to change the object model at runtime. It is also
intended for those that are working with meta-architectures to allow a system to adapt to
changing requirements at runtime. People attending this tutorial will learn how to use
Composite, TypeObject, Properties, Strategy, Interpreter and Builder Design Patterns to
implement Adaptive Object-Models such as those described by dynamic systems
modeled by Hay’s and Fowler's Analysis Patterns.

References:
 http://www.adaptiveobjectmodel.com

Presenter Profile:

Joseph W. Yoder has worked on the architecture, design, and implementation of various
software projects dating back to 1985. These projects have incorporated many
technologies and range from stand-alone to client-server applications, multi-tiered,
databases, object-oriented, frameworks, human-computer interaction, collaborative
environments, web-based, and domain-specific visual-languages. In addition these
projects have spanned many domains, including Medical Information Systems,
Manufacturing Systems, Medical Examination Systems, Statistical Analysis, Scenario
Planning, Client-Server Relational Database System for keeping track of shared
specifications in a multi-user environment, Telecommunications Billing System, and
Business & Medical Decision Making. Recently his focus has been on how to build
dynamic and adaptable systems. This has led to work on Adaptive Object-Models which
are systems that have an architecture to allow for systems to adapt to changing
requirements without programming.

Joseph W. Yoder has assisted many companies with the development of software
applications, specifically object-oriented and web-based systems. Joe has mentored
object-oriented developers and provided internal training on using patterns to assist with
object-oriented development. Recently he has been teaching Java, Smalltalk, Patterns,
Frameworks, Object-Oriented Analysis and Design and has mentored analysts and
developers on many of their applications. He was also involved in the management and
development of a reusable Enterprise Class Libraries.
�

Joe is the author of over two-dozen published patterns and has been working with
patterns for a long time, writing his first pattern paper in 1995, and was the conference
chair for the PLoP'97, conference on software patterns and was the programming chair of
The Second Latin American Conference on Pattern Languages of Programming.

Joe enjoys building elegant and successful systems, helping people succeed, and learning
new things. He wants to continue to provide analysis, design, and mentoring and to write
papers that reflect these experiences.

Main topic(s):�
��

�

• Adaptable Systems
• Architectural analysis/design/patterns
• Components
• Domain Specific Language
• Dynamic Object-Model
• Emerging technologies
• Frameworks
• Generative Programming
• Metadata
• Meta-Modeling
• Meta-Architectures
• Model-Driven Architecture
• Reflective and metalevel
• Reusable Black-Box Components
• Evolving Requirements

The following includes and example of the first few slides of the presentation.

Adaptive Object-Model
Architecture

“How to Build Systems that can
Dynamically Adapt to changing

Requirements”

www.adaptiveobjectmodel.com
www.refactory.com

By: Joseph W. Yoder

Table of Contents

• General Problem
• General Solution
• Architectural Elements of AOM
• An Example in the Medical Domain
• Implementation Issues
• Advantages of AOM

Table of Contents (cont.)

• Disadvantages of AOM
• Other Alternatives
• When AOM is the best solution?
• When AOM is not the solution?
• Summary

General Problem

• Requirements change within applications’
domain.

• Requirements and Rules are changing rapidly.
• Applications have to quickly adapt to new

business requirements.
• Changing the application is costly, it generally

includes code and data-storage.
• There are cycles of: build-compile-release.

General Solution

• Create an object design (meta-model) that
describes the domain objects which includes
attributes, relationships, and business rules as
instances rather than classes.

• The domain objects are instantiated through a
description given by the user or domain expert.

• Each new requirement is satisfied by creating a
new description and a new instantiation.

 Adaptive Object-Model

– An ADAPTIVE OBJECT-MODEL is an
object model that provides “meta”
information about itself so that it can be
changed at runtime

• explicit object model that it interprets
at run-time

• change the object model, system changes
its behavior

– ADAPTIVE OBJECT-MODELS usually
arise as domain-specific frameworks

– Rules and Behavior are stored as descriptive
(meta) information in ADAPTIVE

• Represents classes, attributes, relationships,
and behavior as metadata.

• Based on instances rather than classes.
• Users change the metadata (object model)

to reflect changes in the domain.
• Stores its Object-Model in a database or in

files and interprets it (can be XML/XMI).

Consequently, the object model is adaptable,
when you change it, the system reflects those

changes immediately.

Adaptive Object-Model

Architectural Elements of AOM

• Metadata
• TypeObject
• Properties
• Type Square

• Entity-Relationship
• Strategy/RuleObjects
• Interpreters/Builders
• Editors/GUIs

Sometimes called a "reflective architecture"
or a "meta-architecture".

 AAddaappttiivvee OObbjjeecctt--MMooddeell
((VVeerryy CCoommmmoonn SSttrruuccttuurree))

Entity

Property

EntityType

PropertyType

-name : String
-type : Type

Rule

PrimRule CompositeRule

rule0..n type

0..nproperties

0..n type

0..n properties

0..n

• ECOOP & OOPSLA 2001 Yoder, Balaguer, Johnson

Classes with

Attributes
Behavior

