02/10/99

Observation Model

Introduction

This document is the design specification for the implementation of Martin’s Fowler observation
pattern. There are two main sources of information, which had been used to build this model; Martin
Fowler's Analysis Pattern book [Fowler96] and “An Alternative Solution to the Observation Pattern
Problem” [Nguyen98] presented in PLOP98.

Fowler goes into quite a bit of details describing models for capturing observations; specifically
for medical purposes. Observations are broken down into two main categories. One is for making
observations that contain a finite discrete set of possible values such as eye color or gender. These are
calledTraits. Another type of observation is for those observations that contain sets of ranged values that
can have any numeric value and possibly an appropriate unit. These types of observations are called
Measurements.

One possible way of building observations could be done by creating a hierarchy of classes
describing each kind of observation. This approach properly works when the domain is well known and
there is little or no change in the set of observations. Figure 1 shows what the resulting architecture might
look like for some basic observations such as height, weight., eye color, hair color, and gender.

Notice here that we associate a set of observationsHersmn. Measurements have quantities
associated with them for the values. These quantities allow for the possibility of converting types (i.e. 1
inch to 2.45 centimeters). It is easy to describe these classes and it is also easy to extend behavior for these
observations by simply programming each class with the needed behavior.

[1
_ Measurement Trait
Quantity Pri— traitValue
unit convertTo:

value
convertTo:

[T | 1
| EyeColor | [HairColor | | Gender |ﬂ]

| Height][Weight | 1

Figure 1 - Static Architecture based on Subclassing

On the other hand, if new specifications for observations are expected, this approach lacks the
ability to add or change observations on-the-fly. This is because each time a new kind of observation is
needed, or a current observation needs to change, either a new class has to be built, or the existing class has
to be changed to reflect the needed changes. Afterwards a new release of the observation application has to
be generated and distributed.

Martin Fowler presents some powerful analysis patterns that model the concepts of observations,
including those that may change over time. Figure 2 is a class diagram for implementing one of the basic
models presented in Fowler's boolRarties have Observations associated with them. There are two
kinds of observationdWleasurement and Trait. The first one represents those observations which are
values in a continuos scale (then there is a unit associated to the value) e.g. 5 feet for height, 180 pounds for
weight, etc. The last one (trait) represents discrete observationBanfya such as blond for hair color,
blue for eye color, AB for blood type, etc. T@&servationType describes the subject of the associated
observation (e.g. height, weight, blood pressure, etc).

02/10/99

Person ObservationTypg

]
Measurement Trait
traitValue
convertTo:
\ 4
Quantity
unit
guantity
convertTo:

Figure 2 - Class Diagram of the Basic Observation Model

Figure 3 is a simple Instance Diagram with an exampléafson called Smith with an
observation of height being 5 ft, and an observation of eye color being blue.

aPerson
name <Smith>
obsCollection

T T\
anObservationType
#height

aMeasurement

aQuantity
value <5>
unit <ft>

aTrait

type
value <blue>

anObservationType
#eyeColor

\4

Figure 3 - Instance Diagram of the Basic Observation Model

As it is shown in the figure there is an instanc&®bbkervationType for each different kind of
observation. It means that if you want to add a new kind of observation, a new instance of
ObservationType has to be created and added to the model (for more details sBgdldbject pattern
[Johnson98])).

Composite Observations

The above observation model can be used to represent a large class of observations seen in many
domains. However it is often the case that the observation might be more complications than the above
model can realize. For example, an observation of the “cholesterol” of a patient is composed by two
independent measures such as HDL and LDL. Martin Fowler referred to these as compound units for
observations. We have extended this concept even further by allowing observations to be composed of
other observations. So, a cholesterol observation contains two atomic observations of HDL ambe_DL.
resulting architecture can be seen in Figure 4.

One of the possible extensions to the original model, [Fowler96] is presented on page 50 as
“Associated Observation”. In particular this architecture deals with “ways to record the chain of evidence
behind a diagnosis.

The architecture proposed in this document handle simple observafieasufement andTrait)
and complex observation€gmpositeObservation), this architecture is based on the Composite design
patterns [GOF]. Because the former composes the last one, in a very general way both @eetlssoc

02/10/99

but the semantic of the relationship is different from the idea expressed by the “associated observation”
architecture. In fact, any class hierarchy and most of the design patterns have associative relationships.
The problem is that general associations can be confusing until you give the associations meaning such as
class hierarchy or composite. Martin discusses this in detail in his UML book [Fowler 97].

ObservationTypg RecordedDate
type comments
I 1T]
Measurement Trait CompositeObservatign
alue value values

\value value

value: value:

convertTo:

A 4

Quantity

Figure 4 - Class Diagram of Composite Observations

The basic idea of Martin's associated observations is to allow observations to be linked to each
other (the patient’s thirst indicated the patient’s diabetes) and observation concepts to be so linked (thirst
indicates diabetes) very similar to diagnosis [Fowler96]. In our model a diagnosis is an observation but it
does not have any diagnosis associations (in a general sense) with other observations. In other words we
are not analyzing what other observations caused the diagnosis. However, our solution still makes it
possible to associate what observations were present during the diagnosis observation so that analysis on
the data can be done. This can be done by creating an observation type for the diagnosis that describes the
structure of the related observations. It is also possible to associate observations about observations such as
we observed that Doctor Jones validated the PKU observation.

An instance ofCompositeObservation can be composed of any kind of observatiGonfposite
Pattern [GOF 95]). In this way it is possible to define a complbservation based on basic/atomic ones.

For example, an observation about the blood pressure could be described in terms of a composite
observation. The “diastolic pressure” and the “systolic pressure” are the components of the “blood
pressure” observation (as a composite). Figure 5 shows an instance diagram for this simple example

anObserv-Type |tYPe
<#BloodPressurey
anObser-Type
<aQuantity>

anotherMeasurement anObser-Type
<anotherQuantity> <#DIASTOLIC>

Figure 5 - Example of Blood Pressure

02/10/99

Note that the instance GompositeObservation (with type#BloodPressure) and the instances
of Measurement are associated with different instance®©lsfervationType (aMeasurement with
#SYSTOLIC and anotherMeasurement with #DIASTOLIC). It makes clear the difference between these
two different observations. Unfortunately, the relationship between the value of the observation and its
type is not yet represented by the architecture. In fact, any value or quantity could be assigned to an
instance ofObservation whether that assignment is valid or not (in terms of the domains rules). It means
that these rules have to be recorded in the head of the programmer (in order to validate inputs from the
GUI) or in the head the final user. One solution for this problem is to add some part of the responsibility of
validation to theObservationType; afterward the model could describe by itself the validation rules
(extracted from the domain). Nguyen and Dillon [Nguyen98] presented a similar architecture in “An
Alternative Solution to the Observation Pattern Problem.”

Validations

The proposed architecture handles different types of observations, “measurements,” “traits,” and
“composed observations.” The subject of each observation is defined by one particular instance of the class
ObservationType. As previously mentioned, it is possible to extend each type for describing the set of
possible valid values associated with them. This can be done by associating each instance of
ObservationType with an approprigggategy [GOF] for validating the types.

EachObservationType is associated with an object that is responsible for determining whether a
value is valid or not. A class hierarchy of validators could have been developed and dynamically plugged
in at run-time. However, analysis revealed that there are two basic kinds of values that could be the
quantifier of an observation, first, a quantity (a single values of a continuous scale) e.g. height, weight, etc.;
second, categories (single values, constants) e.g. eye color, hair color, etc. This allows for the
ObservationTypes to in a sense be extended with types of validators. So in a sense, an observation uses a
TypeObject to describe its type of observation, which in turn usesTiweObject pattern to describe its
validator. Descriptive data (metadata) can then be used to associate and instantiate the appropriate
validators with the appropriate types of observations. This double use Bid@bject pattern (which we
call the TypeSquare pattern) is commonly seen in dynamic meta-architectures. Foote and Yoder [Foote98]
describe this type of dynamic architecture in more detail.

The resulting architecture fafalidators is shown in Figure 6.

ObservationTypel—>| Validator |

type
\validator
I |
DiscreteValidato RangedValidato
descriptorSet intervalSet
validUnit

Figure 6 - Architecture for Observation Validation

Each subclass o¥/alidator records a different class of valid elements. In the case of the
DiscreteValidator, it knows a collection of valid constants e.g. blue, green, brown for valid eye color. In
the case of th®angedValidator, it contains a collection of intervals where a value is valid and unit in
which the quantity of the measure is “legally” expressed.

Notice that instances dfrait are always associated with an instanc®istreteValidator and
instances of Measurement are always associated with instance RBfngedValidator. Thus,
DiscreteValidator and RangedValidator are just describing the difference between the values they are

02/10/99

expecting to store in théobservationValue variable. Therefore, thieasurement andTrait classes can
go away.

Figure 7 shows the resulting class diagram for the implementation of observations with validators.
Parties are an abstract concept described in Fowler's book for dealing with dynamic organizations and
people. Describe more here.

> Validator
isValid: obsValue
alidatorName

[|
DiscreteValidato [Rangedvalidato

descriptorSet intervalSet
validUnit

[] J
[PrimitiveObservationTypd | CompositeObservationTyp}

[]
Primitive Observatio [CompositeObservati
observationValue L

Figure 7 - Complete Class Diagram

Examples

A) “A child gives a blood sample to determine the level of lead in his body. The result of that test would be
an observation. An actual result value could be 10 micrograms/deciliter. The child could have 0 to many
tests in their lifetime”

WE HAVE TO REBUILD THE DIAGRAM
Figure 8 - Object Diagram for Example 1

The object diagram for the example is shown in Figure 8. In this case the Observation is a
composed observation and the typ#TgstResult. It knows a collection of one single observation,
aMeasurement, which already has its owdbservationType.

B) “I.- A person is given a skin test for Tuberculosis. They show a positive reaction.

Il.- They give a saliva sample for testing. The acid bath test show a positive reaction.

lll.- The microbacteria growth test indicates a living organism.

IV.- The organism is identified as Microbacterium Tuberculosis Hominis.

V.- After several antibodies are applied to a sample, it is determined that the antibiotic Penicillin will
effectively Kill this strain of bacterium.”

From the example above it is easy to recognize |, Il as observations (probably they are Test-Results). llI
and IV could be results of the same test, so it could be observations within a new TestsRésuilt.
observation? Or is it a new object a medical prescription?

The example is Medical Condition, which is an observation type associated with a
CompositeObservation. Figure 9presents some abstraction of the resulting architecture.

WE HAVE TO REBUILD THE DIAGRAM

Figure 9 - A more abstract representation of Composite Observation

02/10/99

Each instance representing compos#eestResult) observation (Figure 9) is
aCompositeObservation with #TestResult as its type and a collection of measurements or traits (as was
shown in Figure 8)

References

[Fowler96] M. Fowler Analysis Patterns, Reusable Object ModAdisson Wesley. 1996

[GOF] Eric Gamma, Richard Helm, Ralph Johnson, John Vlissidlesign Patterns: Elements of
Reusable Object-Oriented Softwakeldison-Wesley, Reading, MA, 1995.

[Johnson98] R. Johnson, B. Wolf. “Type Obje@®attern Languages of Program Design Addisson
Wesley, 1998

[Nguyen98] N. Nguyen, T. Dillon. “An Alternative Solution to the Observation Pattern Problem”.
Proceedings of Pf®8. Technical Report #wucs-98-25, Dept. of Computer Science,
Washington University Department of Computer Science, October 1998.

URL: http://jerry.cs.uiuc.edu/~plop/plop98

[Foote98] B. Foote, J. Yoder. “Metadata and Active Object Models”. Proceedingp©BPTechnical
Report #wucs-98-25, Dept. of Computer Science, Washington University Department of
Computer Science, October 1998. URLtp://jerry.cs.uiuc.edu/~plop/plop98

