
1

Round-Trip Software Engineering Using UML:
From Architecture to Design and Back

Abstract

A key promise of software architecture research is that better software systems can
result from modeling their important aspects throughout development. Choosing
which system aspects to model and how to evaluate them are two decisions that frame
software architecture research. Part of the software architecture community, primarily
from academia, has focused on analytic evaluation of architectural descriptions.
Another part of the community, primarily from industry, has chosen to model a wide
range of issues that arise in software development, with a family of models that span
and relate the issues. One problem that neither community has adequately addressed to
date is round-trip software engineering: consistently refining a high-level model of a
software system into a lower-level model (forward engineering) and abstracting a low-
level model into a higher-level one (reverse engineering). This paper investigates the
possibility of using the Unified Modeling Language (UML), an object-oriented design
language, to that end. The paper assesses UML’s suitability for modeling architectural
concepts and provides a framework for identifying and resolving mismatches within
and across different UML views, both at the same level of abstraction and across lev-
els of abstraction. Finally, the paper briefly discusses our current tool support for
round-trip software engineering.

1 Introduction

The basic promise of software architecture research is that better software systems can result
from modeling their important aspects during, and especially early in the development. Choosing
which aspects to model and how to evaluate them are two decisions that frame software architec-
ture research.

Part of the software architecture research community has focused on analytic evaluation of
architectural descriptions. A large number of architecture description languages (ADLs) has been
proposed [10]. Each ADL embodies a particular approach to the specification and evolution of an
architecture, with specialized modeling and analysis techniques that address specific system
aspects in depth. Another part of the community has focused on modeling a wide range of issues
that arise in software development, with a family of models that span and relate the issues of con-
cern. However, by emphasizing breadth over depth, many problems and errors can potentially go
undetected. One key cause is the lack of clear understanding of the relationship among the differ-
ent models; two related problems are refining high-level models into lower-level models (forward
engineering) and abstracting low-level models into higher-level ones (reverse engineering),
depicted in Figure 1.

Nenad Medvidovic� Alexander Egyed� David S. Rosenblum��

�Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781
{neno,aegyed}@sunset.usc.edu

��Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92697-3425
dsr@ics.uci.edu

x x
Published in Proceedings of the 2nd Workshop on Object-Oriented Reengineering (WOOR) co-located with the 7th European Software Engineering Conference held jointly with the 7th ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE), Toulouse, France, September 1999, pp. 1-8

2

Table 1 summarizes the two predominant approaches to addressing software architectures.
Although the positions of the two communities are more complex than represented in the table,
we believe that the table provides a useful, if simplified, overview of their relationship.

This issue paper investigates the possibility of using the Unified Modeling Language (UML)
[11], an object-oriented design language, to span the two communities. UML is well suited for
this because it provides a large, useful, and extensible set of predefined constructs, it is semi-for-
mally defined, it has the potential for substantial tool support, and it is based on experience with
mainstream development methods. The paper is based on a set of issues we have explored to date.
The key aspects of our work have been:
• an assessment of UML’s suitability for modeling architectural concepts provided by ADLs;
• a framework for identifying and resolving mismatches within and across different UML mod-

els, both at the same level of abstraction and across levels of abstraction; and
• tool support for integrating the above concepts into a round-trip engineering environment.

In this paper, we briefly present three possible approaches to using UML to model software
architectures. We then discuss a view integration framework used to support automated validation
of a modeled software system’s integrity. Finally, we make some general observations on using
UML to model software architectures, as well as ensuring consistent and complete refinement of
architectures into designs and reverse-engineering of architectures from designs.

TABLE 1. Software Architecture Community Fragmentation

Academic Approach Industrial Approach

focus on analytic evaluation of architectural models focus on wide-range of development issues

individual models families of models to span and relate the issues

rigorous modeling notations practicality over rigor

powerful analysis techniques architecture as the “big picture” in development

depth over breadth breadth over depth

special-purpose solutions general-purpose solutions

evolution environment

Architecture in ADL High-level design Low-level design Implementation

Class Diagram

State Transition Diagram

Sequence Diagram
. . .

CompB

CompA

CompC

class CompA extends Window
{

 public ...
}

FIGURE 1. Round-trip software engineering. Forward engineering: a system model is refined from an architecture
into designs at several levels of abstraction, and, eventually, an implementation. Certain system aspects may be
implemented directly from an architectural description. Reverse engineering: a system’s design and/or architecture is
abstracted from its implementation. Modifications to a model at any level must be properly reflected in higher- and
lower-level models.

3

2 Using UML to Model Software Architectures

The four-layer metamodeling architecture of UML suggests three possible strategies for mod-
eling software architectures in UML:
• use UML “as is,”
• constrain the UML meta model using UML’s built-in extension mechanisms, and
• augment the UML meta model to directly support the needed architectural concepts.

We use a diagram that conceptually depicts UML’s four-layer metamodeling architecture,
shown in Figure 2, to illustrate the three approaches. Each approach has certain potential advan-
tages and disadvantages for forward and reverse engineering, discussed below.

2.1 Strategy 1: Using UML “As Is”

The simplest strategy is to use the existing UML model to represent software architectures
(Figure 2a) [7]. A major advantage of the approach is that it results in architectural models that
are immediately understandable by any UML user and manipulable by UML-compliant tools.
However, the approach would provide no means for explicitly representing the relationship
between existing UML constructs and architectural concepts for which there is no direct UML
counterpart (e.g., software connectors or architectural style rules). Rather, this relationship would
have to be maintained implicitly by the software architect.

This approach would thus also present a considerable challenge in trying to reverse engineer a
system’s architecture from its UML model. None of the UML artifacts would contain any archi-
tectural information or explicitly represent architect’s intentions. Instead, the architecture would
have to be inferred from the design elements and their interactions. The repeatability of such a
process is questionable: it is likely that different people would deem different elements of the
UML model architecturally relevant, resulting in different (reverse engineered) architectures.

2.2 Strategy 2: Constraining UML

The space of software design situations and concerns for which UML is intended exceeds that
of software architectures. Therefore, one possible approach to modeling architectures in UML is
to constrain UML via stereotypes to address new concerns in software development. Conceptu-
ally, this approach can be represented using UML’s metamodeling architecture from Figure 2b:

Meta-Meta Model

Meta Model

Model

User Objects

FIGURE 2. The four-layer metamodeling architecture of UML. The meta-meta model layer defines a language for
specifying the meta model layer. The meta model layer, in turn, defines legal specifications in a given modeling
language. For example, the UML meta model defines legal UML specifications. The model layer is used for
modeling specific software systems, while the user objects layer corresponds to specific instances of a given model.
(a) UML “as is” approach; (b) constrained UML approach (only subsets of the UML model and user object spaces
are used); (c) augmented UML approach (the meta model, model, and user object spaces are extended).

(a) (b) (c)

4

only the relevant portion of the UML model is made available to the software architect. To date,
we have applied this strategy to three ADLs [8,13]: C2 [9], Wright [2], and Rapide [6].

The major advantage of this approach is that it explicitly represents and enforces architectural
constraints. Furthermore, an architecture specified in this manner would still be manipulable by
standard UML tools and would be understandable by UML users (with some added effort in
studying the stereotypes, partly expressed in OCL). Finally, the task of reverse engineering the
architecture from a UML model with explicitly specified stereotypes would be greatly simpli-

fied.1

A disadvantage of the approach is that it may be difficult to fully and correctly specify the
boundaries of the modeling space in Figure 2b. Additionally, as a practical concern, no tools that
enforce OCL constraints in UML specifications currently exist. Finally, our extensive study of
relating UML and ADLs using this strategy has shown that certain ADL features for modeling
architectural semantics cannot be easily (or at all) represented in UML. An example is Rapide’s
event causality [8].

Another issue related to this strategy is the manner in which ADL-specific stereotypes are
actually used within UML (see Figure 3). There are two possibilities:
• UML is used as the primary development notation, from which excursions are made to various

ADLs (with the help of ADL-specific stereotypes) in order to exploit the existing ADL tool
support;

• UML is used as the only development notation and ADL-specific stereotypes are accompanied
by ADL-specific tools that have been modified to operate on UML specifications.
There are difficulties associated with both options. Using UML as the primary notation

requires transformations both from a UML model to its ADL counterpart and from a possibly
modified ADL model back to UML. This is a difficult task. To date, we have only shown how a
UML model (extended via stereotypes) can be mapped to an ADL [13], but not vice versa. Using
UML as the sole notation, on the other hand, requires modification, and perhaps reimplementa-
tion, of tool support that already exists for specific ADLs.

2.3 Strategy 3: Augmenting UML

One obvious, and therefore tempting, approach to using UML to support the needs of software
architectures is to extend UML’s meta model to directly support architectural concepts, as shown
in Figure 2c. Extending the meta model helps to formally incorporate new modeling capabilities
into UML. The potential benefit of such an extension is that it could fully capture every desired
feature of every ADL. Furthermore, if features from the extended version are used in modeling a
system’s design, the task of reverse engineering the system’s architecture from the design is
greatly simplified.

1. Clearly, having explicit stereotypes in a reverse engineered model requires that the engineer identify and designate important
design/architectural elements abstracted from a lower-level model. This added task may require a slight change in the engi-
neer’s focus, but it does not fundamentally alter the nature of reverse software engineering.

FIGURE 3. A UML model of a software system with ADL-specific extensions.

Core Model (UML)

Model Extension for Specific Concerns

5

However, such an extension to UML would not come without a price. The challenge of stan-
dardization is finding a language that is general enough to capture needed concepts without add-
ing too much complexity, while such a modification would result in a notation that is overly
complex. Moreover, unless the extensions were made part of the UML standard, they would be
non-conforming, incompatible with UML-compliant tools, and potentially incomprehensible to
architects.

3 Reconciling Architectural View Mismatches

A major emphasis in architecture-based software development is placed on identifying and
reconciling mismatches within and among different views of a system (as enabled, e.g., by UML
diagrams at different levels of abstraction). One facet of our work has been to investigate the ways
of describing and identifying the causes of architectural mismatches in UML views. To this end,
we have devised and applied a view integration framework, accompanied with a set of activities
and techniques for identifying mismatches in an automatable fashion, described below [3].

This approach exploits redundancy between views: for instance, if view A contains informa-
tion about view B, this information can be seen as a constraint on B. The view integration frame-
work is used to enforce such constraints and, thereby, the consistency across the views. In
addition to constraints and consistency rules, our view integration framework also defines what
information can be exchanged across different views and how it can be exchanged. This is critical
for automating the process of identifying and resolving inconsistencies.

The view integration framework is depicted in Figure 4. The System Model represents the
(UML) model of the designed software system. In the course of forward software engineering,
new information is added to the system model and existing views are updated; in the case of
reverse engineering, information from existing views is abstracted to create new, higher-level
views (View Synthesis). Whenever new information is added or a new view created, it must be
validated against the system model to ensure its conceptual integrity (View Analysis). View Anal-
ysis involves the following major activities:
• Mapping identifies related pieces of information and thereby describes what information is

overlapping. Mapping is often done manually via naming dictionaries or traceability matrices.
A major part of our work has focused on automating this task by using patterns, shared inter-
faces, and inter-view dependency traces.

View
Synthesis

(graphical and textual)

Differentiation
(Comparison)
identify differences
between model, rules,
and constraints

View Analysis

Transformation
(Extraction)
- through abstraction
- through patterns
- through translation

Mapping
(Cross-Referencing)
- through names
- through patterns
- through association

System Model
e.g. UML model

FIGURE 4. View integration framework.

6

• Transformation of model elements in order to simplify, i.e., generalize, a detailed view
(abstraction) or exchange information between different types of views (translation).

• Differentiation traverses the model to identify potential mismatches within its elements. Poten-
tial mismatches can be automatically identified through the use of rules and constraints. Mis-
match identification rules can frequently be complemented by mismatch resolution rules.
Automated differentiation is strongly dependent on transformation and mapping.
To date, we have applied our view integration framework on several UML views: class and

object diagrams, sequence diagrams, and statechart diagrams. We have also expanded the use of
the framework beyond UML, to architectural styles (e.g., C2 [14], pipe-and-filter, layered, etc.)
and design patterns.

A strong benefit of this framework is that it can be applied to both forward and reverse engi-
neering. In forward engineering, the architect may start off by describing the architecture, fol-
lowed by the design (and, subsequently, the implementation). Our view integration framework
may then be applied to ensure that the design is consistent internally as well as with higher-level
abstractions (including the architecture). Thus, the first step includes the creation of views at vari-
ous levels, whereas the second step validates the conceptual integrity of those views.

In reverse engineering, the architect follows essentially the same procedure. Obviously, a dis-
tinction is in step one where the architecture is now created from the design; however, the valida-
tion process (step two) remains the same. When ensuring the integrity of two models, it does not
matter which one is created first: inter-view consistency and completeness can be validated either
way.

As outlined in our integration framework, consistency between views at various levels of
abstraction is enabled by transforming lower-level views into higher-level ones. Thus, our frame-
work has the potential to further support reverse-engineering by semi-automatically generating
higher-level abstractions from lower-level models. This is achieved by using the transformation
techniques summarized above. At that point, step two of our reverse engineering process is
applied to ensure that subsequent changes to the derived abstraction (e.g., the architecture) remain
consistent with the initial model (e.g., the design).

4 Observations

Our effort to date has furthered our understanding of UML’s suitability for supporting archi-
tecture-based, round-trip software engineering. We have gained valuable insights on which we
intend to base our future work. These insights are discussed below.

Software Modeling Philosophies. Neither UML nor ADLs constrain the choice of implementa-
tion language or require that any two components be implemented in the same language or thread
of control. ADLs or styles may assume particular communication protocols and UML typically
supports such restrictions. The behavior of architectural constructs (components, connectors,
communication ports, and so forth) can usually be modeled with UML’s sequence, collaboration,
statechart, and activity diagrams. Existing ADLs are usually able to support only a subset of these
kinds of semantic models.

Assumptions. Like any notation, UML embodies certain assumptions about its intended usage.
Software “architecting,” in the sense it is often used in the architecture community (by employing
conceptual components, connectors, and their configurations, exploiting rules of specific architec-

7

tural styles, and modeling local and global architectural behavior and constraints), was not an
intended use of UML. A software architect may thus find that the support for the desired architec-
tural constructs found in UML only partially satisfies his/her needs.

Problem Domain Modeling. UML provides extensive support for modeling a problem domain.
Architectural models described in ADLs, however, often hide much of the information present in
a domain model. Modeling all the relevant information early in the development lifecycle is cru-
cial to the success of a software project. Therefore, a domain model should be considered a sepa-
rate and useful architectural perspective.

Architectural Abstractions. Some concepts of software architectures are very different from those
of UML. For example, connectors are first-class entities in many ADLs. We have demonstrated
that the functionality of a connector can typically be abstracted by a class or component. How-
ever, connectors may have properties that are not directly supported by a UML class. The under-
lying problem is even deeper. Although UML may provide modeling power equivalent to or
surpassing that of an ADL, the abstractions it provides may not match an architect’s mental model
of the system as faithfully as the architect’s ADL of choice. If the primary purpose of a language
is to provide a vehicle of expression that matches the intuitions and practices of users, then that
language should aspire to reflect those intentions and practices. We believe this to be a key issue:
a given language (e.g., UML) offers a set of abstractions that an architect uses as design tools; if
certain abstractions (e.g., components and connectors) are buried in others (e.g., classes), the
architect’s job is made more (and unnecessarily) difficult; separating components from connec-
tors, raising them both to visibility as top-level abstractions, and endowing them with certain fea-
tures and limitations also raises them in the consciousness of the designer.

Architectural Styles. Architecture is the appropriate level of abstraction at which rules of a com-
positional style (i.e., an architectural style) can be exploited and should be elaborated. Doing so
results in a set of heuristics that, if followed, will guarantee a resulting system certain desirable
properties. Standard UML provides no support for architectural styles; the rules of different styles
somehow have to be built into UML. We have done so by using stereotypes. One potential prob-
lem with this approach, as already discussed, is ensuring that style rules are correctly and com-
pletely captured in UML.

Architectural Views. ADLs typically support modeling of a limited number of architectural
views, but ensure their full consistency and interchangeability. UML, on the other hand, allows
designers to model a system from many perspectives, but does not provide mechanisms for ensur-
ing their consistency. The presence of multiple, possibly inconsistent views in a UML model is
very likely to make the task of reverse engineering more challenging. Both UML and ADLs can
therefore benefit from techniques for view mismatch identification and reconciliation. One such
set of techniques was discussed in Section 3.

5 Current Status and Future Work

We intend to expand this work in several directions, including providing tool support for using
UML in architecture modeling, maintaining traceability and consistency between architectural
and design decisions, and combining the existing implementation generation and reverse engi-
neering capabilities for ADLs and UML. We also intend to draw upon our experience to date to

8

suggest specific extensions needed in the UML meta model to better support software architec-
tures.

We have already begun to address several of these issues. We have developed an initial inte-
gration of DRADEL [9], an environment for C2 style architecture-based development, with Ratio-
nal Rose [12], an environment for software design and implementation with UML [1]. The
integration enables automated mapping from an architecture described in C2’s ADL into UML
using both Strategies 1 and 2. Currently, this mapping is uni-directional and the UML model is
consistent with respect to the architecture only initially; any subsequent refinements of the UML
model may violate architectural decisions. Also, as additional views are introduced into the
design (e.g., activity and deployment diagrams), their consistency with the existing views (e.g.,
state and class diagrams) must be ensured. To this end, we are beginning to develop a set of tech-
niques and associated tool support to ensure full integration of views in UML [4,5]. The resulting
tool, UML/Analyzer, provides automated support for forward and reverse engineering using
UML class diagrams. In the future, this support will be extended to other kinds of UML diagrams
and to architectures modeled in DRADEL.

6 References

[1] M. Abi-Antoun and N. Medvidovic. Enabling the Refinement of a Software Architecture into a
Design. Submitted for publication, 1999.

[2] R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM Transactions on Soft-
ware Engineering and Methodology, July 1997.

[3] A. Egyed. Automating Architectural View Integration in UML. Technical Report USCCSE-99-
511, Center for Software Engineering, University of Southern California, Los Angeles, CA, 1999.

[4] A. Egyed and P. Kruchten. Rose/Architect: A Tool to Visualize Architecture. Proceedings of the
32nd Hawaii International Conference on System Sciences (HICSS-32), January 1999.

[5] A. Egyed and N. Medvidovic. Extending Architectural Representation in UML with View Integra-
tion. Submitted for publication, 1999.

[6] D.C. Luckham and J. Vera. An Event-Based Architecture Definition Language. IEEE Transac-
tions on Software Engineering 21(9), September 1995.

[7] N. Medvidovic and D.S. Rosenblum. Assessing the Suitability of a Standard Design Method for
Modeling Software Architectures. In Proceedings of the First IFIP Working Conference on Soft-
ware Architecture (WICSA1), San Antonio, TX, February 1999.

[8] N. Medvidovic, D.S. Rosenblum, J.E. Robbins, and D.F. Redmiles. Modeling Software Architec-
tures in the Unified Modeling Language. Submitted for publication, 1999

[9] N. Medvidovic, D.S. Rosenblum and R.N. Taylor. A Language and Environment for Architecture-
Based Software Development and Evolution. In Proceedings of the 21st International Conference
on Software Engineering, Los Angeles, CA, May 1999.

[10] N. Medvidovic and R.N. Taylor. A Classification and Comparison Framework for Software
Architecture Description Languages. In IEEE Transactions on Software Engineering, to appear.

[11] Object Management Group. OMG UML Specification Version 1.3 R9 Draft. January 1999.
Accessed at Web site http://uml.shl.com/.

[12] Rational Software Corporation. Rational Rose 98: Using Rational Rose.
[13] J.E. Robbins, N. Medvidovic, D.F. Redmiles, and D.S. Rosenblum. Integrating Architecture

Description Languages with a Standard Design Method. In Proceedings of the 20th International
Conference on Software Engineering (ICSE’98), Kyoto, Japan, April 1998.

[14] R.N. Taylor, N. Medvidovic, K.M. Anderson, E.J. Whitehead, Jr., J.E. Robbins, K.A. Nies, P.
Oreizy and D.L. Dubrow. A Component- and Message-Based Architectural Style for GUI Soft-
ware. IEEE Transactions on Software Engineering, June 1996.

