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Introduction

Toward the end of the 1970’s, the field of cryptography underwent a significant transformation with
the introduction of public-key cryptosystems. Previous cryptosystems required that any two users
share a secret key if they wished to communicate securely, whereas in the new public-key paradigm
encryption and decryption used different keys: one encryption key which is made public, and one
decryption key which is kept secret. Every user would produce such a pair of keys, and provided that
there was some central repository of public keys, anyone could send encrypted messages to anyone
else without ever having to exchange a secret key in advance. Naturally, if public-key cryptography
is to work, it is essential that the (public) encryption key provide a wouldbe adversary with little
or no information about how to decrypt encrypted messages. Information-theoretically, however,
this is impossible. Nonetheless, if one is willing to assume widely believed conjectures about the
complexity of certain computational problems (such as factoring large integers), then it is feasible
to construct public-key cryptosystems that can be implemented efficiently, but that cannot be
cracked efficiently. For instance, Rabin constructed a cryptosystem in [Rab79] where deciphering
messages is provably as hard as factoring large integers of the form N = pq, where p and q are
primes, and in [ElG85], ElGamal gave a cryptosystem which is secure provided that the so-called
“discrete logarithm” problem is computationally intractable. Other cryptosystems, such as the
well-known RSA cryptosystem and the Diffie-Hellman key-exchange protocol rely on very similar
(albeit, possibly stronger) assumptions than the Rabin and ElGamal cryptosystems.

In addition to these cryptosystems, there have been various proposals that rely on the (conjectured)
complexity of some other mathematical problems. For example, the Merkle-Hellman [MH78] and
Chor-Rivest [CR88] cryptosystems rely on the intractability of a combinatorial problem known
as the “knapsack problem”, and the McEliece [McE78] cryptosystem relies on the intractability
of decoding certain linear error-correcting codes. Unfortunately, these cryptosystems, and many
others, have either been shown to be impractical (e.g. the public key may need to be very large in
order to achieve a reasonable level of security) or to be insecure. Hence, we are left in a position
where the remaining cryptosystems — those that are practical and not known to be insecure —
are based on the assumptions that integer factorization and the discrete logarithm problem are
intractable. This could be problematic, however, if it were ever discovered that either (or both) of
these problems is not computationally infeasible. Indeed, Shor has shown (see [Sho94]) that efficient
algorithms exist for integer factorization and certain versions of the discrete logarithm problem in
the quantum computation model, which has raised awareness about the potential problem of having
only public-key cryptosystems that rely on these assumptions.
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One of the most recent classes of (conjecturally) intractable problems that has been considered for
use in cryptography is that of lattice reduction problems. A lattice is typically represented by a
collection of vectors that are said to form a basis for the lattice. Given a lattice, there are many
possible bases, and the task of lattice reduction (more precisely, lattice basis reduction) is to find
a basis where the vectors are as short as possible. Remarkable progress has been made in giving
fast algorithms for sub-optimal lattice reduction, most notably the LLL algorithm and its variants
which have a wide range of applications in computational mathematics and cryptanalysis. Even
so, the problem of finding the shortest vectors in a lattice remains, in many cases, an intractable
problem. This observation, together with a result due to Ajtai ([Ajt96]) which gives a class of
lattice problems that are as hard on average as in the worst case, sparked an interest in using
lattice problems in public-key cryptography.

The goal of this thesis is to present an introduction to the computational aspects of the theory of
lattices (Chapter 1), with the ultimate goal of understanding the constructions underlying these
“lattice cryptosystems” as well as the attacks that thwart them (Chapter 2). We assume familiarity
with the basics of public key cryptography, elementary complexity theory (e.g. NP-completeness
and polynomial-time reductions) and linear algebra. The remainder of this thesis is organized as
follows. Chapter 1 treats the basic definitions and properties of lattices, definitions of reduced bases
and the LLL algorithm, and a brief discussion of lattice problems that have been proved to be hard
in a well-defined sense. Chapter 2 describes the three most notable “lattice cryptosystems”: the
Goldreich-Goldwasser-Halevi, Ajtai-Dwork and NTRU cryptosystems. For each cryptosystem, we
will describe the protocol, the justifications for security and the most effective cryptanalytic attacks
against it. We will conclude with a discussion of the current state of lattice cryptosystems and some
possible directions in which the field may go, including some open problems.
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Chapter 1

Lattices and Lattice Reduction

1.1 Definitions and Properties of Lattices

The lattices that we will be studying are defined to be discrete subgroups L of n-dimensional
Euclidean space Rn given by L def= Z~b1 + · · ·+ Z~bm, where the {~bi}mi=1 are linearly independent (i.e.
they form a basis for an m-dimensional linear subspace of Rn). In this case, the {~bi}mi=1 are said to
form a basis for the lattice L and typically a lattice will be given by the n×m matrix of the form:

B =

 |~b1

|

  |~b2

|

 · · ·

 |~bm

|


This allows us to think of L as the image of Zm under the linear map defined by B, i.e. L = BZm.
However, the choice of a basis B for a lattice L is by no means unique. For instance, if we let M be
an m×m integer matrix, then BMZm is necessarily a sub-lattice of BZm because MZm ⊆ Zm, and
therefore BMZm ⊆ BZm. Furthermore, if we require that M have determinant equal to 1 or −1,
then it is a basic fact from linear algebra that M−1 will also have integer entries, so M−1Zm ⊆ Zm

or alternatively Zm ⊆ MZm, and hence we have BZm ⊆ BMZm. Therefore we can conclude that
BMZm = BZm, i.e. BM is also a basis for L = BZm.

Next we will define the fundamental parallelepiped, determinant and dual of a lattice.

Definition 1.1. Let L = BZm be a lattice generated by basis vectors {~bi}mi=1. Then the fundamental
parallelepiped of L with respect to B is defined by

P (B) = {c1
~b1 + · · ·+ cm

~bm ∈ Rn | 0 ≤ ci < 1}

Also, we denote by width(P (B)) the width of the parallelepiped P (B), i.e. the maximum, over i, of
the length of the projection of ~bi onto the orthogonal complement of span(~b1, . . . ,~bi−1,~bi+1, . . . ,~bm).

Definition 1.2. Let L = BZm be a lattice. Then the determinant of L, det(L), is defined to be
the m-dimensional volume of P (L). In particular, if L is full-dimensional (i.e. m = n), then
det(L) = |det(B)|.
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The following proposition shows that the determinant of a lattice is in fact well-defined.

Proposition 1.3. The determinant of L = BZm does not depend on the choice of basis B, and is
given by det(L) =

√
det(BT B).

Proof. First we will prove the result when L is a full-dimensional lattice. Suppose that L = BZn =
B′Zn where B and B′ are two different bases of L. Then there must be integer matrices M,M ′

such that B′M ′ = B and BM = B′ which implies that B = BMM ′. By the multiplicativity of
the determinant, this means that det(MM ′) = 1, and hence that det(M),det(M ′) ∈ {−1, 1}, since
M and M ′ are integer matrices. We know that B′ = BM , and therefore |det(B)| = |det(B′)|,
concluding the proof in the case where L is full-dimensional.

Now suppose that L = BZm = B′Zm is an m-dimensional lattice where m < n. Let U be
an orthogonal linear transformation that maps the m-dimensional subspace R~b1 + · · · + R~bm =
R~b′1 + · · · + R~b′m to {(v1, . . . , vn) ∈ Rn | vm+1 = · · · = vn = 0}. (Such a map can be constructed
by composing (n−m) rotations that eliminate coordinates m + 1 though n one at a time.) Since
U is orthogonal, it is area-preserving and therefore the m-dimensional area of the fundamental
parallelepiped of UL (with respect to the basis UB) is the same as the m-dimensional area of the
fundamental parallelepiped of L (with respect to B). By construction UB (respectively UB′) has
m non-zero rows and n −m rows of zeros, so let Bm (resp. B′

m) be the m ×m matrix consisting
of the non-zero rows of UB (resp. UB′). It is not difficult to see that |det(Bm)| is equal to the
m-dimensional area of the fundamental parallelepiped of L = BZm and that |det(B′

m)| is equal to
the m-dimensional area of the fundamental parallelepiped of L = B′Zm. Hence, by the proof in the
case where L was full-dimensional, it follows that these two volumes are the same. Furthermore,
det(BT B) = det((UB)T UB) = det(Bm)2 = det(L)2, yielding an efficient way to compute det(L)
as
√

det(BT B).

Definition 1.4. The dual lattice of a full-dimensional lattice L, denoted L∗, consists of all vectors
whose inner-product with all vectors in L is an integer, i.e.

L∗ = {~v ∈ Rn | 〈~v, ~z〉 ∈ Z for all ~z ∈ Zn}

Hence if B is a basis for L, then BT−1 is a basis for L∗.

In the next section, we will be concerned with the problem of finding a basis B′ for a lattice
L = BZm, such that the ~b′i are “short” in some well-defined sense. In preparation for this, we will
define a Minkowski reduced basis, and an LLL-reduced basis.

Definition 1.5. Let L = BZm be a lattice. Then the basis B for L is said to be Minkowski
reduced if there is no non-zero vector in L that is shorter than ~b1, and in general there is no non-
zero vector in L that is shorter than ~bi and not contained in span(~b1, . . . ,~bi−1) such that ~b1, . . . ,~bi

can be extended to a basis for L.

Before defining the notion of an LLL reduced basis, we recall the Gram-Schmidt orthogonalization
method where, given a basis ~b1, . . . ,~bn, we construct an orthogonal basis ~b∗1, . . . ,

~b∗n, by setting

~b∗i = ~bi −
i−1∑
j=1

µi,j
~b∗j
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where µi,j
def= 〈~bi,~b

∗
j 〉/〈~b∗j ,~b∗j 〉 = 〈~bi,~b

∗
j 〉/‖~b∗j‖2.

Definition 1.6. Let L = BZm be a lattice. Then the basis B for L is said to be LLL reduced if

|µi,j | ≤
1
2

for 1 ≤ j < i ≤ m

and
‖~b∗i + µi,i−1

~b∗i−1‖2 ≥
3
4
‖~b∗i−1‖2 for 1 < i ≤ m

The constant 3
4 is arbitrary. It may be replaced with any δ satisfying 1

4 < δ < 1, in which case the
basis is said to be LLL reduced with respect to the parameter δ. We will complete the analysis
using the constant 3

4 for notational simplicity, noting that several occurrences of the constant “2”
(such as in 2m−1 in the following result) would need to be replaced with 1

δ− 1
4

for the more general

result.

The following proposition, due to Lenstra et al in [LLL82], gives an explicit guarantee on the length
on of the vectors in an LLL reduced lattice.

Proposition 1.7. Let ~b1, . . . ,~bm be an LLL reduced basis for a lattice L ⊆ Rn, and let ~x1, . . . , ~xt ∈
L be linearly independent lattice points. Then

‖~bi‖2 ≤ 2m−1 ·max{‖~x1‖2, . . . , ‖~xt‖2}

for 1 ≤ i ≤ t.

Proof. First we will show that ‖~b∗j‖2 ≤ 2i−j‖~b∗i ‖2 for 1 ≤ j ≤ i ≤ m. By the definition of
an LLL reduced basis, we have that ‖~b∗i + µi,i−1

~b∗i−1‖2 ≥ 3
4‖~b

∗
i−1‖2, or equivalently, ‖~b∗i ‖2 ≥(

3
4 − µ2

i,i−1

)
‖~b∗i−1‖2 for 1 < i ≤ m. Since |µi,i−1| ≤ 1

2 by assumption, this gives us that ‖~b∗i ‖2 ≥
1
2‖~b

∗
i−1‖2, and so it follows by induction that ‖~b∗j‖2 ≤ 2i−j‖~b∗i ‖2 for 1 ≤ j ≤ i ≤ m. We can use this

to show that ‖~bi‖2 ≤ 2i−1‖~b∗i ‖2 as follows. By the definition of the Gram-Schmidt vectors ~b∗i , we
have ~bi = ~b∗i +

∑i−1
j=1 µi,j

~b∗j , where the vectors ~b∗i are orthogonal by construction, and thus

‖~bi‖2 = ‖~b∗i ‖2 +
i−1∑
j=1

µ2
i,j‖~b∗j‖2

≤ ‖~b∗i ‖2 +
i−1∑
j=1

1
4
· 2i−j‖~b∗i ‖2

= ‖~b∗i ‖2
(

1 +
1
8
(
2i−1 − 1

))
≤ 2i−1‖~b∗i ‖2

Now let ri,j ∈ Z be such that ~xj =
∑m

i=1 ri,j
~bi, and define, for each j, `(j) to be the largest i

such that ri,j 6= 0. In particular, if we write ~xj =
∑m

i=1 r′i,j
~b∗i , where r′i,j ∈ R, then we have that
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r′`(j),j = r`(j),j ∈ Z by the definition of the Gram-Schmidt procedure, and hence we have that

‖~xj‖2 ≥ r′2`(j),j‖~b`(j)‖2 ≥ ‖~b`(j)‖2. Without loss of generality, we may assume that the ~xj are such
that `(1) ≤ · · · ≤ `(t), and this forces j ≤ `(j), for if this were not the case, we would have
~x1, . . . , ~xj ∈ span(~b1, . . . ,~bj−1), violating the assumption that ~x1, . . . , ~xt are linearly independent.
Combining this with the previous observations that ‖~b∗j‖2 ≤ 2i−j‖~b∗i ‖2 for 1 ≤ i ≤ j ≤ m and that
‖~xj‖2 ≥ ‖~b`(j)‖2, we have

‖~bi‖2 ≤ 2i−1‖~b∗i ‖2 ≤ 2`(i)−1‖~b∗`(i)‖
2 ≤ 2m−1‖~xi‖

1.2 Lattice Reduction and the LLL Algorithm

In general, it is difficult to find a Minkowski reduced basis for a lattice. For small dimensions this
is a tractable problem (e.g. see [CS93]), and we give an algorithm for 2-dimensional lattices below.
However, the complexity of the best known methods grows exponentially in the dimension of the
lattice, and they quickly become impractical. Even so, in [LLL82] an approximation algorithm is
given that finds a reasonably reduced basis in polynomial time. This algorithm has come to be
known as the LLL (or L3) algorithm (after its authors, Lenstra, Lenstra and Lovász), and the basis
returned by this algorithm is guaranteed to be LLL reduced.

First, however, we consider the problem of finding a Minkowski reduced basis of a 2-dimensional
lattice.

Proposition 1.8. A basis B = [~b1,~b2] for a 2-dimensional lattice L is Minkowski reduced if and
only if ‖~b1‖ ≤ ‖~b2‖ ≤ ‖~b1 +~b2‖, ‖~b1 −~b2‖.

Proof. If B is Minkowski reduced, then by definition, ‖~b1‖ ≤ ‖~b2‖. Furthermore, if it were not the
case that ‖~b2‖ ≤ ‖~b1 +~b2‖ (resp. ‖~b2‖ ≤ ‖~b1 −~b2‖), then ~b1 +~b2 (resp. ~b1 −~b2) would be shorter
than ~b2, and since it is clearly linearly independent of ~b1 this would contradict the fact that ~b2 is
the shortest non-zero vector that is linearly independent of ~b1.

Now suppose that B satisfies ‖~b1‖ ≤ ‖~b2‖ ≤ ‖~b1 +~b2‖, ‖~b1−~b2‖, and consider an arbitrary non-zero
lattice vector ~v = p~b1 + q~b2 where (p, q) ∈ Z2 \ {~0}. Without loss of generality we may assume that
p and q are both non-negative since we may freely replace [~b1,~b2] with [±~b1,±~b2] while preserving
the fact that ‖~b1‖ ≤ ‖~b2‖ ≤ ‖~b1 +~b2‖, ‖~b1 −~b2‖.

If either q or p is zero, then ~v is simply a multiple of either ~b1 or ~b2, and so we have that ‖~v‖ ≥ ‖~b1‖.

Before continuing, we recall a basic geometric fact which we will use several times in the remainder
of the proof: If ~a,~b and ~c lie on a line (in this order, i.e. ~b lies between ~a and ~c) then if ‖~b‖ > ‖~a‖
it must be the case that ‖~c‖ > ‖~b‖.

Next we consider the case where both p and q are non-zero, i.e. p and q are both strictly positive.
If q ≥ p we have ‖~v‖ = ‖p~b1 + q~b2‖ ≥ ‖~b1 + q

p
~b2‖, where q

p ≥ 1. However, ~b1,~b1 +~b2 and ~b1 + q
p
~b2
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lie on a line (in this order), and hence if it were the case that ‖~v‖ < ‖~b1‖, we would have that
‖~b1 + q

p
~b2‖ < ‖~b1‖ which would imply that ‖~b1 +~b2‖ < ‖~b1‖, but this is a contradiction. On the

other hand, if p > q we have ‖~v‖ = ‖p~b1+q~b2‖ ≥ ‖p
q
~b1+~b2‖, where p

q > 1. By the same reasoning as

before, since ~b1,~b1 +~b2 and p
q
~b1 +~b2 lie on a line (in this order), if it were the case that ‖~v‖ < ‖~b1‖,

we would have that ‖ q
p
~b1 +~b2‖ < ‖~b1‖ which would imply that ‖~b1 +~b2‖ < ‖~b1‖, which is again a

contradiction.

Thus, we have that ‖~v‖ ≥ ‖~b1‖, which proves that ~b1 is a shortest vector in the lattice. It remains
to be shown that ~b2 is one of the shortest vectors which are linearly independent of ~b1. Let
~v = p~b1 + q~b2 where q 6= 0, and suppose that ‖~v‖ < ‖~b2‖. Consider the three collinear points
~b2,~b2 +~b1 and ~b2 + p

q
~b1. If p ≥ q these points lie in the above order, and thus if it were the case

that ‖~b2 + p
q
~b1‖ ≤ ‖~v‖ < ‖~b2‖, this would mean that ‖~b2 + ~b1‖ < ‖~b2‖ which is a contradiction.

If p < q and ‖~v‖ = ‖p~b1 + q~b2‖ < ‖~b2‖, then we have that ‖p
q
~b1 + ~b2‖ < 1

q‖~b2‖. By the triangle

inequality, we also have ‖p
q
~b1 + ~b2‖ ≥

∣∣∣‖p
q
~b1‖ − ‖~b2‖

∣∣∣. Since p < q, ‖p
q
~b1‖ ≤ q−1

q ‖~b1‖ ≤ q−1
q ‖~b2‖

implies that ‖p
q
~b1 + ~b2‖ ≥

∣∣∣‖p
q
~b1‖ − ‖~b2‖

∣∣∣ ≥ 1
q‖~b2‖, contradicting the previous observation that

‖p
q
~b1 +~b2‖ < 1

q‖~b2‖.

Algorithm 1.9 (Gauss). Let [~b1,~b2] be a basis for a two dimensional lattice L. Then the following
algorithm returns a Minkowski reduced lattice within polynomially many iterations.

IF ‖~b1‖ > ‖~b2‖THENswap(~b1,~b2);
WHILE ‖~b2‖ > ‖~b1 +~b2‖ or ‖~b2‖ > ‖~b1 −~b2‖DO

~b2 = ~b2 −
⌈
〈~b1,~b2〉
‖~b1‖2

⌋
~b1;

IF ‖~b1‖ > ‖~b2‖THENswap(~b1,~b2);
ENDWHILE
RETURN[~b1,~b2]

Proof. Clearly the algorithm will only return a Minkowski reduced basis by Proposition 1.8 (observe
that it is always the case that ‖~b1‖ ≤ ‖~b2‖ at the beginning and end of the WHILE loop), so we need

only show that the algorithm halts in polynomial time. First we note that 〈~b1,~b2〉
‖~b1‖2

is equal to the

Gram-Schmidt coefficient µ2,1. Furthermore, we note that the condition “‖~b2‖ > ‖~b1+~b2‖ or ‖~b2‖ >

‖~b1 −~b2‖” is equivalent to |µ2,1| > 1
2 : Indeed, ‖~b2‖ > ‖~b1 +~b2‖ if and only if ‖~b2‖2 > ‖~b1 +~b2‖2, or

equivalently 〈~b2,~b2〉 > 〈~b1+~b2,~b1+~b2〉 = 〈~b1,~b1〉+2〈~b1,~b2〉+〈~b2,~b2〉, i.e. µ2,1 = 〈~b1,~b2〉
〈~b1,~b1〉

< −1
2 . By the

same reasoning, ‖~b2‖ > ‖~b1−~b2‖ if and only if 〈~b2,~b2〉 > 〈~b1−~b2,~b1−~b2〉 = 〈~b1,~b1〉−2〈~b1,~b2〉+〈~b2,~b2〉,
i.e. µ2,1 = 〈~b1,~b2〉

〈~b1,~b1〉
> 1

2 . Thus, in the case of a two-dimensional lattice, the notions of Minkowski
reduced and LLL reduced are equivalent. With this observation, we will suppress the remainder of
the proof, noting simply that Algorithm 1.9 is a special case of Algorithm 1.12 (the LLL algorithm)
which we prove returns an LLL reduced basis within polynomially many iterations.
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Next we will describe the LLL basis reduction algorithm. Let ~b1, . . . ,~bm be a basis for an m-
dimensional lattice L ⊆ Zn. We assume that the Gram-Schmidt coefficients µi,j = 〈~bi,~b

∗
j 〉/〈~b∗j ,~b∗j 〉,

and the squared lengths of the Gram-Schmidt basis, Bi
def= ‖~b∗i ‖2 are always available (and up-to-

date for the current basis) at every stage of the algorithm. We will now describe the two major
subroutines used in the LLL algorithm.

Subroutine 1.10 (Size reduction).
SIZEREDUCE(k)

i = 1;
WHILE i < k DO

~bk = ~bk − dµk,k−ic~bk−i;
µk,k−i = µk,k−i − dµk,k−ic;
i = i + 1;

ENDWHILE
ENDSIZEREDUCE

First, we note that the Gram-Schmidt vectors ~b∗i are unchanged, since the only change that is made
to ~bk is to subtract a vector that is in span(~b∗1, . . . ,~b

∗
k−1). Therefore the Bi are unaffected by a call

to SIZEREDUCE(k).

Second, after calling SIZEREDUCE(k), all the Gram-Schmidt coefficients µs,t (1 ≤ t < s ≤ m)
are accurate for the updated basis: This is because every time the basis vector ~bk is modified
by subtracting a multiple of ~bk−i, the appropriate change is made to µk,k−i and no other µs,t

(1 ≤ t < s ≤ m) are affected since, in general, µs,t only changes if ~bs changes, and we have
accounted for the changes to all µk,t where 1 ≤ t < k.

Finally, we observe that the assignment µk,k−i = µk,k−i − dµk,k−ic ensures that |µk,s| ≤ 1/2 for all
s < k. In particular, if we know that the partial basis ~b1, . . . ,~bk−1 is LLL reduced, then the partial
basis ~b1, . . . ,~bk that is obtained after running SIZEREDUCE(k) will satisfy the first condition of
being LLL reduced, i.e. |µi,j | ≤ 1

2 for 1 ≤ j < i ≤ k.

Next we will examine the SWAP subroutine.
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Subroutine 1.11 (Swap). SWAP(k)
Exchange bk−1 and bk;
T = Bk;
µ = µk,k−1;
µk,k−1 = µk,k−1Bk−1

Bk+µ2
k,k−1Bk−1

;

Simultaneously perform the following assignments:
Bk−1 = Bk + µ2Bk−1;
Bk = Bk−1Bk

Bk+µ2Bk−1
;

\\ Update the Gram-Schmidt coefficients:
i = 1;
WHILE i ≤ k − 2 DO

Exchange µk−1,i and µk,i;
ENDWHILE
i = k + 1;
WHILE i ≤ n DO

Simultaneously perform the following assignments:
µi,k−1 = µi,k−1µ + µi,kT/Bk−1;
µi,k = µi,k−1 − µi,kµk,k−1;

ENDWHILE
ENDSWAP

First we will show that the assignments to Bk−1 and Bk are correct (i.e. these are the squared
lengths of the (k − 1)-st and k-th Gram-Schmidt vectors of the new basis, after ~bk−1 and ~bk are
swapped). This is sufficient to show that all the Bi are correct, as ~b∗k−1 and ~b∗k are the only Gram-
Schmidt vectors that are affected by swapping ~bk−1 and ~bk. Denote the original basis (before the
swap) by vectors ~bi and denote the new basis (after the swap) by vectors ~b′i. By the definition of
the Gram-Schmidt procedure, ~b′∗k−1 is the projection of ~b′k−1 = ~bk onto the orthogonal complement
of span(~b′1, . . . ,~b

′
k−2) = span(~b1, . . . ,~bk−2). That is, ~b′∗k−1 = ~b∗k + µk,k−1

~b∗k−1, and so ‖~b′∗k−1‖2 =
Bk + µ2

k,k−1Bk−1, which is exactly the value that is assigned to Bk−1. Similarly, ~b′∗k is the projec-
tion of ~b′k = ~bk−1 onto the orthogonal complement of span(~b′1, . . . ,~b

′
k−1) = span(~b1, . . . ,~bk−2,~bk).

Hence, ~b′∗k can be obtained by taking the projection of ~bk−1 onto the orthogonal complement of
span(~b1, . . . ,~bk−2) (i.e. ~b′∗k ) and then subtracting the projection of ~b∗k−1 onto the orthogonal com-
plement of the projection of ~bk onto the orthogonal complement of span(~b1, . . . ,~bk−2) (i.e. the

projection of ~b∗k−1 onto the orthogonal complement of ~b′∗k−1, or
〈~b∗k−1,~b′∗k−1〉
〈~b′∗k−1,~b′∗k−1〉

·~b′∗k−1). Thus,

~b′∗k = ~b∗k −
〈~b∗k−1,

~b′∗k−1〉
〈~b′∗k−1,

~b′∗k−1〉
·~b′∗k−1

Hence,

‖~b′∗k ‖2 =

∥∥∥∥∥~b∗k−1 −
〈~b∗k−1,

~b′∗k−1〉
〈~b′∗k−1,

~b′∗k−1〉
·~b′∗k−1

∥∥∥∥∥
2

=

∥∥∥∥∥~b∗k−1 −
µk,k−1Bk−1

Bk + µ2
k,k−1Bk−1

·~b′∗k−1

∥∥∥∥∥
2
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=

∥∥∥∥∥~b∗k−1 −
µ2

k,k−1Bk−1

Bk + µ2
k,k−1Bk−1

·~b∗k−1

∥∥∥∥∥
2

+

∥∥∥∥∥~b∗k−1 −
µk,k−1Bk−1

Bk + µ2
k,k−1Bk−1

·~b∗k

∥∥∥∥∥
2

=

∥∥∥∥∥ Bk
~b∗k−1

Bk + µ2
k,k−1Bk−1

∥∥∥∥∥
2

+
µ2

k,k−1B
2
k−1Bk(

Bk + µ2
k,k−1Bk−1

)2 =
Bk−1Bk

Bk + µ2
k,k−1Bk−1

which is exactly what is assigned to Bk.

In addition to updating Bk−1 and Bk, we must update all the Gram-Schmidt coefficients that
involve ~bk−1 or ~bk. We do this by computing the new coefficients in terms of the previous ones as
in SIZEREDUCE(k). For µi,j where 1 ≤ j < i ≤ k− 1 this simply amounts to exchanging µk,j and
µk−1,j . To prove that the other assignments actually represent the correct values for the µi,j takes
some more work however, so we leave it as an exercise, or alternatively the reader may consult
[LLL82, Coh93].

A simple, yet essential observation about the SWAP subroutine, is that if the partial basis~b1, . . . ,~bk

is LLL reduced, then after running SWAP(k), the partial basis ~b1, . . . ,~bk−1 is still LLL reduced,
since none of the vectors ~b1, . . . ,~bk−1 is affected by a call to SWAP(k).

Now we present the complete LLL algorithm.

Algorithm 1.12 (LLL basis reduction). The following algorithm computes an LLL reduced
basis for L = BZn within polynomially many iterations.

LLL(~b1, . . . ,~bm)
Compute the Gram-Schmidt orthogonal basis ~b∗1, . . . ,

~b∗m;
Bi = ‖~b∗i ‖2;
k = 2;
WHILE k ≤ m DO

IF |µk,k−1| > 1
2 THENSIZEREDUCE(k);

IF ‖~b∗k + µk,k−1
~b∗k−1‖2 < 3

4‖~b
∗
k−1‖2 THEN

SWAP(k);
IF k > 2 THEN k = k − 1;

ELSE
k = k + 1;

END IF
ENDWHILE

ENDLLL

Proof. The correctness of the algorithm follows from previous remarks about the subroutines
SIZEREDUCE and SWAP. In particular, if we consider the value of k at the beginning of each
iteration though the WHILE loop, we have that ~b1, . . . ,~bk−1 is LLL reduced; this is trivially the
case when k = 2, and as we noted above, the (possible) call to SIZEREDUCE(k) will not change
the fact that ~b1, . . . ,~bk−1 is LLL reduced. Furthermore it will ensure that ~b1, . . . ,~bk−1 satisfy the
first condition of being LLL reduced. Now consider the second IF statement. If the condition,
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‖~b∗k +µk,k−1
~b∗k−1‖2 < 3

4‖~b
∗
k−1‖2, is false then we in fact have that ~b1, . . . ,~bk is LLL reduced since we

know that ~b1, . . . ,~bk−1 is LLL reduced and ~b1, . . . ,~bk already satisfies the first condition of being
LLL reduced. Therefore, ~b1, . . . ,~bk−1 is always LLL reduced at the beginning (or equivalently, the
end) of the WHILE loop. Hence, if the algorithm ever terminates (when k = m + 1) the basis it
returns will be LLL reduced.

To show that the algorithm halts after polynomially many iterations we will consider the quantity

D
def=

m∏
i=1

det(~b1, . . . , ~bi)2

In particular, we will show that D decreases by a factor of more than 4
3 each time the SWAP

subroutine is called and that it is unchanged each item the SIZEREDUCE subroutine is called. By
Proposition 1.3, det(L)2 ∈ Z for any integer lattice, and so we have that D2 ∈ N. Thus we can
bound the number of calls to SWAP, and hence the number of iterations of the WHILE loop, by
the requirement that (3/4)2tD2 > 1, where t denotes the number of iterations.

A call to SIZEREDUCE(k) simply acts by a series of elementary row (determinant ±1) operations
on any partial basis ~b1, . . . ,~bi, and thus det(~b1, . . . , ~bi)2 is unchanged for all i. Specifically the value
of D is unaffected by calls to the SIZEREDUCE subroutine.

A call to SWAP(k) will exchange ~bk−1 and ~bk, so det(~b1, . . . ,~bi)2 is unchanged for 1 ≤ i ≤ k−2, and
also for k ≤ i ≤ m since the order of the basis vectors does not affect the determinant of a lattice.
Therefore the only term of D that is affected by the swap is det(~b1, . . . ,~bk−1)2. In particular, we
are replacing det(~b1, . . . ,~bk−2,~bk−1)2 with det(~b1, . . . ,~bk−2,~bk)2, or equivalently, replacing D with

D · det(~b1, . . . ,~bk−2,~bk)2

det(~b1, . . . ,~bk−2,~bk−1)2

Let π(~x) denote the projection of ~x onto the orthogonal complement of span(~b1, . . . ,~bk−2). Then, the

above is equal to D · ‖π(~bk)‖2

‖π(~bk−1)‖2
. By the definition of the Gram-Schmidt procedure, π(~bk−1) = ~b∗k−1,

and similarly we have that π(~bk) = ~b∗k + µk,k−1
~b∗k−1. Therefore, D is replaced by a quantity that is

no more than

D ·
‖~b∗k + µk,k−1

~b∗k−1‖2

‖~b∗k−1‖2

By assumption, ‖~b∗k +µk,k−1
~b∗k−1‖2 < 3

4‖~b
∗
k−1‖2, and therefore D is replaced by a quantity that less

than 3
4 ·D. Hence t, the number of calls to SWAP, must satisfy (3/4)2tD2 > 1, i.e. −2t+2 log 4

3
D >

0 or equivalently t < log 4
3
D less than 2 log 3

4
D. Finally, we note that D can be computed in

polynomial time and so log 4
3
D is only polynomially large (in terms of n), and by combining this

with the observation that k must increase every time that SWAP is not called, we can bound the
total number of iterations by log 4

3
D + n which is certainly only polynomially large.

A more detailed analysis also reveals that each iteration only takes polynomial time if the lattice
is an integer lattice, i.e. L ⊆ Zn. Specifically, it can be shown (see [LLL82]) that the LLL
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algorithm requires O(n4 log K) arithmetic operations, or O(n6(log K)2) bit operations, where K =
max{‖~b1‖2, . . . , ‖~bm‖2, 2}.

In light of this, the implications of Proposition 1.7 are more significant. Most notably, the LLL
algorithm guarantees, in polynomial time, a vector ~b1 (the first vector of the reduced basis) whose
length is within a factor of 2

m−1
2 of the length of the shortest vector in the lattice. Admittedly, 2

m−1
2

grows quite rapidly as a function of the dimension, m, of the lattice. However, as noted before,
we may substitute the value of 3

4 in the definition of an LLL reduced basis with any constant

1
4 < δ < 1 and this will result in an approximation of ‖~b1‖ ≤

(
1

δ− 1
4

)n−1
2 . Thus, by increasing δ

we may improve the quality of the (guaranteed) approximation; of course, this also increases the
bound on the guaranteed running time.

Furthermore, we should note that the LLL algorithm often performs much better in practice than
the guarantee in Proposition 1.7. This has contributed to popularity of lattice basis reduction as
a tool in cryptanalysis and other computational applications. For instance, standard methods for
cracking weak pseudo-random number generators, and deciphering collections of messages that are
encrypted via RSA using a small encryption exponent, employ lattice reduction. For a survey of
applications of lattice reduction in cryptanalysis, see [JS98] or [NS00]. The original application of
the LLL algorithm (in [LLL82]) was to finding the minimal polynomial of an algebraic real number
that was given by a numerical approximation and to factoring integer polynomials. Since then,
the LLL algorithm has found many other applications, for instance in discovering integer relations
among irrational numbers of the kind used by Bailey et al. ([BBP97]) in finding their remarkable
formula for π:

π =
∞∑
i=0

1
16i

(
4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)
which allows for the computation of an arbitrary bit of π without computing all the previous bits.
More recently, Elkies has given an algorithm for finding rational points close to plane curves that
uses low-dimensional lattice basis reduction and allows one to find, for instance, the following “near
solution” to Fermat’s equation: 2830599653 + 22188885173 = 22204229323 − 30, as well as many
other’s which are too large to write out completely here (see [Elk00]). While the applications of
lattice reduction which we shall see in the next chapter are cryptanalytic, they will also demonstrate
the versatility of lattice reduction as an algorithmic tool as illustrated by the above examples.

1.3 Provably Hard Lattice Problems

In the previous section, we saw how the LLL algorithm can efficiently give an approximation to a
reduced basis or an approximation to the shortest vector of a lattice. This may seem to suggest
that lattice basis reduction is not a very difficult problem, especially since the LLL algorithm often
performs much better in practice than the guarantee in Proposition 1.7. Nonetheless, the problem of
lattice basis reduction and related lattice problems remain inaccessible in general. Before discussing
some results that indicate that lattice reduction is likely to be a hard problem, we will give two
definitions that are basic to a discussion of hard lattice problems.
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Definition 1.13. Given a lattice L = BZm, the Shortest Vector Problem (SVP) is to find the
shortest non-zero vector in L.

Definition 1.14. Given a lattice L = BZm and a target vector ~t ∈ Rn, the Closest Vector Problem
(CVP) is to find the closest lattice point to ~t.

Both of these problems are known to be NP-hard, and more recently there have been results
showing that finding approximate solutions to these problems is intractable as well. For example,
in [Mic98] Micciancio shows that approximating the shortest vector of a lattice to within a factor of√

2 is NP-Hard. The proof of this fact is lengthy and draws from several other complexity results
concerning lattices, so we will provide only a sketch of the proof.

The following lemma is proved in [Mic98].

Lemma 1.15. For any constant ε > 0 there exists a probabilistic polynomial time algorithm that
on input 1k computes a lattice basis B ∈ R(m+1)×m, a vector ~s ∈ Rm+1 and a matrix C ∈ Zk×m

such that with probability arbitrarily close to one, the following are true:

• For every non-zero ~z ∈ Zm, ‖B~z‖2 > 2.

• For all ~x ∈ {0, 1}k there exists a ~z ∈ Zm such that C~z = ~x and ‖B~z − ~s‖2 < 1 + ε.

Definition 1.16. Let g (the gap function) be a parameter that may vary as a function of the
dimension of the lattice that we are considering. Then we define the promise problem GapSVPg by
the following:

• (V, d) is a YES instance for GapSVPg if V is a basis for a lattice in Rn and d ∈ R, such that
‖V ~z‖ ≤ d for some ~z ∈ Zn \ {~0}.

• (V, d) is a NO instance for GapSVPg if V is a basis for a lattice in Rn and d ∈ R, such that
‖V ~z‖ > gd for all ~z ∈ Zn \ {~0}.

Definition 1.17. Let g (the gap function) be a parameter that may vary as a function of the
dimension of the lattice that we are considering. Then we define the promise problem GapCVP′g by
the following:

• (V, ~y, d) is a YES instance for GapCVP′g if V ∈ Zk×n, ~y ∈ Zk and d ∈ R such that ‖V ~z−~y‖2 ≤ d
for some ~z ∈ {0, 1}n.

• (V, ~y, d) is a NO instance for GapCVP′g if V ∈ Zk×n, ~y ∈ Zk and d ∈ R such that ‖V ~z−w~y‖2 >
gd for all ~z ∈ Zn and for all w ∈ Z.

Theorem 1.18 (Micciancio). Approximating the shortest vector in a lattice L to within any
constant factor less that

√
2 is NP-Hard (for randomized reductions).
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Proof. We follow the proof given in [Mic98], and give a (randomized) reduction from GapCVP′2
ε

to
GapSVP 2

1+2ε
, using algorithm whose existence is guaranteed by Lemma 1.15. Since it is shown that

GapCVP′c is NP-hard (for any constant c) in [SAS93], this will prove the result.
Let (N, ~y, d) be either a YES instance or a NO instance of GapCVP′2

ε

. We will give a transformation

to an instance (V, 1 + 2ε) of GapSVP 2
1+2ε

such that (V, 1 + 2ε) is a YES instance if (N, ~y, d) is a YES
instance, and (V, 1 + 2ε) is a NO instance if (N, ~y, d) is a NO instance.

We use Lemma 1.15 to obtain a lattice basis B, a vector ~s and a matrix C, satisfying the conditions
in the Lemma, and we construct the matrix V :

V
def=
(

B −~s(√
ε
dN
)
C −

√
ε
d~y

)

Suppose that (N, ~y, d) is a YES instance of GapCVP′2
ε

. By definition, this means that there is an

~x ∈ {0, 1}k such that ‖N~x− ~y‖2 ≤ d. Let ~w
def=
[
~z
1

]
, where ~z satisfies C~z = ~x and ‖B~z−~s‖ < 1 + ε.

(We know that such a ~z exists by Lemma 1.15.) Using ~w, we verify that (V, 1 + 2ε) is a YES
instance of GapSVP 2

1+2ε
:

‖V ~w‖2 = ‖B~z − ~s‖2 +
ε

d
‖N~x− ~y‖2 ≤ (1 + ε) + ε = 1 + 2ε

Now suppose that (N, ~y, d) is a NO instance of GapCVP′2
ε

. In order to show that (V, 1 + 2ε) is a NO

instance of GapSVP 2
1+2ε

, we need to show that for any non-zero ~w, ‖V ~w‖2 ≥ 2
1+2ε · (1 + 2ε) = 2.

Write ~w =
[
~z
w

]
6= ~0, yielding

‖V ~w‖2 = ‖B~z − w~s‖2 +
ε

d
‖N~x− w~y‖2

If w = 0, then ~z must be non-zero. This gives that ‖V ~w‖2 ≥ ‖B~z‖2 and we know that ‖B~z‖2 > 2 by
construction for Lemma 1.15, so we have that ‖V ~w‖2 > 2. If w 6= 0, then we have ‖V ~w‖2 ≥ ε

d‖N~x−
w~y‖2, and by definition of (N, ~y, d) as a NO instance of GapCVP′2

ε

, we know that ‖N~x−w~y‖2 > 2
ε d.

Therefore ‖V ~w‖2 ≥ ε
d‖N~x− w~y‖2 > ε

d ·
2
ε d = 2.

Another noteworthy complexity result which is responsible in part for motivating much of the
material in next chapter is due to Ajtai in [Ajt96]. In this paper, Ajtai gives a randomized problem
which, in essence, consists of finding a short vector in the kernel of a matrix modulo q, i.e. a matrix
over Zq (where “short” refers to length of the vector considered as an element of {0, 1, . . . , q−1}n ⊆
Zn). The main result is a proof that the ability to solve random instances of this problem with
non-negligible probability implies the ability to: 1) Approximate the shortest vector in any integer
lattice up to a polynomial factor, 2) Find the shortest vector in any integer lattice where the shortest
vector is nc-unique (i.e. all vectors that are less than nc times as long as the shortest vector are
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simply multiples of the shortest vector, where n = the dimension of the lattice, and c is a constant),
and 3) Find a basis B for any integer lattice, such that maxi ‖~bi‖ is within a polynomial factor of
being as small as possible.

We shall discuss a similar result when examining the Ajtai-Dwork cryptosystem. In the meantime,
we simply note that the above results provide strong evidence that lattice reduction problems,
such as the Shortest Vector Problem, are in fact quite difficult and may be useful in constructing
public-key cryptosystems as we shall see in the next chapter.
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Chapter 2

Lattice Cryptosystems

In this chapter we will examine the three most notable lattice cryptosystems inspired by Ajtai’s
average-case/worst-case equivalence result: the Goldreich-Goldwasser-Halevi (GGH), Ajtai-Dwork
and NTRU Cryptosystems. With the exception of the Ajtai-Dwork cryptosystem, where a direct
connection is proved between deciphering encryptions and determining the shortest vector in a
certain class of lattices, the arguments that these cryptosystems are secure are predominantly
heuristic. We will occasionally summarize some of these arguments for security, but we will not
focus on these as they are inherently informal and for the most part they will prove less significant
when we examine the weaknesses of these cryptosystems. The attacks we shall consider also have
many heuristic aspects; however, they are valuable examples of the flexibility of lattice reduction
and the ingenuity that is necessary when using lattice reduction as an algorithmic tool. The
discussion of these attacks will also provide a context for mentioning some standard assumptions
and heuristics that are useful when applying lattice reduction in practice.

2.1 The Goldreich-Goldwasser-Halevi Cryptosystem

In [GGH96], Goldreich, Goldwasser and Halevi present a cryptosystem that has come to be known
as the GGH cryptosystem. In essence, the cryptosystem works as follows: The public key is a
poor basis of a lattice (i.e. a basis with long vectors), and the private key is a reduced basis of
the same lattice. Encryption is performed by taking a lattice point corresponding to the plaintext
and applying a small random perturbation to obtain a point not in the lattice, but whose closest
lattice point is the plaintext. Hence, ciphertexts are instances of the Closest Vector Problem, and
the security of the private key depends on the intractability of finding a sufficiently reduced basis
for the lattice. The next few sections will describe these steps in more detail.
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2.1.1 Generating Keys

At first, it is not clear how to obtain a lattice together with a reduced basis, given that we are
assuming that finding a reduced basis is intractable. However, the following observation suggests a
method for generating lattice bases together with reduced bases: The volume of the fundamental
parallelepiped (i.e. the determinant) of the lattice is unaffected by the choice of basis; therefore,
if we chose a collection of vectors that are nearly orthogonal, we obtain a short basis for the
lattice that they generate. In particular, instead of generating a lattice and then seeking a reduced
basis, we chose a collection of (nearly orthogonal) vectors that will be a reduced basis. One of
the methods suggested in [GGH96] is to choose the private basis matrix, R, uniformly at random
from {−`, . . . , `}n×n, where ` = 4 is the recommended parameter. With high probability this will
generate a nonsingular matrix, which is important as we will need R−1 for decryption. This can be
seen by considering R modulo a prime p that divides 2` + 1; since the entries of R are uniformly
distributed modulo p, it follows from a basic fact from algebra that R will be non-singular modulo
p with high probability and hence non-singular over Z with high probability. Furthermore, if ~ri

and ~rj are two distinct columns of R, then E [〈~ri, ~rj〉] = 0, and

Var [〈~ri, ~rj〉] = E
[
〈~ri, ~rj〉2

]
= E

( n∑
k=1

(~bi)k(~bj)k

)2
 = E

[
n∑

k=1

(~bi)2k(~bj)2k

]

since E
[
(~bi)k1(~bj)k1(~bi)k2(~bj)k2

]
= 0 for k1 6= k2 because the coordinates are chosen independently.

Hence Var [〈~ri, ~rj〉] =

E

[
n∑

k=1

(~bi)2k(~bj)2k

]
= n E

[
(~bi)2k(~bj)2k

]
= n

∑̀
s=1

∑̀
t=1

s2t2 ·
(

2
2` + 1

)2

=
4n

(2` + 1)2

(
`(` + 1)(2` + 1)

6

)2

=
n`2(` + 1)2

9

and in particular, Var [〈~ri, ~rj〉] = 400n/9 when ` = 4. However, this is quite small given that
E
[
‖~ri‖2

]
= E [〈~ri, ~ri〉] = n

∑`
s=1 s2 2

2`+1 = n`(`+1)
3 , and Var

[
‖~ri‖2

]
= E

[
〈~ri, ~ri〉2

]
− E [〈~ri, ~ri〉]2 =

E

( n∑
k=1

(~ri)2k

)2
− (n`(` + 1)

3

)2

= E

[
n∑

k=1

(~ri)4k

]
+ E

 n∑
s 6=t

(~ri)2s(~ri)2t

− n2`2(` + 1)2

9

= n
n∑

a=1

a4 2
2` + 1

+ n(n− 1)
∑̀
b=1

∑̀
c=1

b2c2

(
2

2` + 1

)2

− n2`2(` + 1)2

9

=
2n

2` + 1
· `(` + 1)(2` + 1)(3`2 + 3`− 1)

30
+

4n(n− 1)
(2` + 1)2

·
(

`(` + 1)(2` + 1)
6

)2

− n2`2(` + 1)2

9
=

=
n`(4`3 + 8`2 + `− 3)

45
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The fact that Var [〈~ri, ~rj ] is not very large (relative to the expected lengths of the vectors ~ri)
suggests that the ~ri will be close to orthogonal. However, while it is possible to use bounds from
elementary probability, such as Chebyshev’s inequality, to choose ` and n such that |〈~ri,~rj〉|

‖~ri‖‖~rj‖ (i.e. the
cosine of the angle between ~ri and ~rj) is smaller than some fixed value with high probability, the
parameters suggested by such an analysis are quite pessimistic. Indeed, the approach of [GGH96]
is to choose ` and n based on numerical experiments. The recommended values are ` = 4 and
n ∈ {200, 250, 300, 350, 400}.

Once we have such a basis R, we look to apply a “random unimodular transformation” to obtain
a non-reduced public basis B. A method for accomplishing this is described in [GGH96], and it
consists of applying (i.e. multiplying R on the right by) matrices of the form:

Vi =



1 ?
. . .

...
1 ?

1
? 1
...

. . .
? 1


where the entries of the off-diagonal entries of the i-th column (denoted by ?) are chosen randomly
and independently from {−1, 0, 1} such that Pr[? = 1] = Pr[? = −1] = 1/7. It is not difficult to
see that such matrices are always unimodular; however there is a much more subtle question of
how many such matrices should be used to ensure that the resulting basis is hard to reduce, while
having entries that are not too large. Unfortunately, the intractability of lattice reduction is not
sufficiently well understood to make such an analysis feasible. Therefore, the approach of [GGH96]
is again to decide the number of matrices Vi to apply based on empirical data. They suggest using
2n such matrices and ensuring that each index i ∈ {1, . . . , n} is used twice.

2.1.2 Encryption/Decryption

We will assume that we have a mapping from messages to n-dimensional integer vectors. Now,
given a message ~m ∈ Zn, the ciphertext is ~c = B~m + ~e, where ~e is a randomly chosen vector from
{−σ, σ}n, for a parameter σ ∈ Z (in practice σ = 3). Thus, encryptions are instances of CV P .

To decrypt the ciphertext ~c using the private basis R, we use an approximate closest vector technique
due to Babai. Namely, we compute R−1~c, round the entries of the resulting vector to the nearest
integer, and then apply R, i.e. ~m′ = R

⌈
R−1~c

⌋
. Let U be the unimodular matrix such that R = BU .

Then
R−1~c = R−1B~m + R−1~e = U−1 ~m + R−1~e

Therefore, since U−1 is an integer matrix, rounding the entries of R−1~c will give U−1 ~m as long as
‖R−1~e‖∞ < 1

2 . Numerical experiments cited in [GGH96] indicate that this is extremely likely when
R is chosen randomly from {−`, . . . , `}n×n.
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2.1.3 Cryptanalysis

The GGH cryptosystem is a very natural application of the closest vector problem as a trapdoor one-
way function. However, there are some aspects of the protocol which seem dangerously structured,
especially the form of the error vector ~e. Indeed, the fact that the error vector is of the form
~e ∈ {−σ,+σ}n, has proven to be problematic, as we shall see below.

The most significant cryptanalysis of the GGH cryptosystem is given in [Ngu99a]. In this paper
Nguyen shows how encryptions reveal information about the plaintexts modulo 2σ, an observation
which allows one to simplify the CVP instance presented by a ciphertext and consequently decrypt
messages using a basis for L which need not be as reduced as the private basis R.

Recall that a message ~m ∈ Zn is encrypted as ~c = B~m + ~e, where ~e is a randomly chosen vector
from {−σ, σ}n, for a parameter σ ∈ Z. Now let ~s = (σ, . . . , σ)T ∈ Zn, and note that

~c + ~s ≡ B~m (mod 2σ)

where the reduction modulo 2σ is componentwise. In particular, since ~c,~s and B are known we
may hope to recover ~m (mod 2σ). Clearly, if B is invertible modulo 2σ, then we can recover ~m
(mod 2σ) by computing B−1(~c+~s) (mod 2σ). Even if B is not invertible, provided that the kernel
of B is not too large, all the possible solutions to this linear system can be found using standard
techniques; for example, if we presume that σ = 3, as is the case in the challenges published on
the Internet consisting of one instance of GGH encrypted message, together with a public key, for
dimensions 200, 250 300, 350 and 400, then the kernel of B can be computed modulo 2 and modulo
3 using techniques described in [Coh93], allowing all the vectors in the kernel of B (mod 6 = 2σ)
to be reconstructed using the Chinese Remainder Theorem. Nguyen cites numerical experiments
and several results about the rank of random matrices modulo primes to justify the claim that the
kernel of B will consist of relatively few vectors. For instance, none of the challenges has a kernel
containing more than 6 vectors. (See [Ngu99a] for the particulars.)

If we have the value of ~m (mod 2σ), call it ~m2σ, then we know that ~c−Bm2σ = B(~m− ~m2σ) + ~e,
in which case every entry of ~m − ~m2σ is divisible by 2σ, i.e. ~m − ~m2σ = 2σ~m′ for some m′ ∈ Zn.
This allows us to write

~c−Bm2σ

2σ
= B~m′ +

~e

2σ
or equivalently

~c−Bm2σ

σ
= 2B~m′ +

~e

σ

The expression on the left-hand side shows how we may consider the task of finding ~m′ as an
instance of the closest vector problem, but where the error vector is now ~e

2σ instead of ~e. In
particular, since ~e ∈ {−σ,+σ}n, we have that ~e

2σ ∈ {−
1
2 ,+1

2}, i.e. ‖ ~e
2σ‖ =

√
n

2 which is significantly
smaller than σ

√
n = ‖~e‖. The result of this is that this instance of the closest vector problem is

significantly easier to solve than version given by the ciphertext. To see this, we note that Babai’s
CVP approximation (i.e. the decryption method) will yield the correct message as long as the
point we are given is within 1

2 width(P (R̃)) of a lattice point, where R̃ is the basis we are using
to decrypt; hence, by producing a CVP instance which is much closer to the lattice, we relax the
requirement that width(P (R̃)) be large, i.e. R̃ need not be as reduced. The right-hand formula
shows how we can still write this CVP instance as an integer lattice problem, now with basis 2B,
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which is significant because many of the fastest lattice reduction routines are optimized for integer
lattices.

Note that we can verify whether the decryption that is obtained, call it m̂, is correct by checking
if ~c − Bm̂ ∈ {−σ, σ}n. This will indicate whether the lattice has been reduced sufficiently, and in
the case where there are multiple lattices, i.e. when B (mod 2σ) has a non-trivial kernel, this will
allow us to determine which (if any) of the decryptions that is obtained is correct.

Current lattice reduction techniques such as the LLL algorithm and its variants can solve these
simplified CVP instances in a reasonable amount of time, and thus in [Ngu99a], Nguyen was able
to recover the message for all of the GGH challenges, except for the dimension 400 message, where
only m2σ was recovered.

2.2 The Ajtai-Dwork Cryptosystem

As we shall see, the Ajtai-Dwork cryptosystem does not give a lattice explicitly in the same way
as the GGH scheme. Nonetheless, there are some very natural connections to lattices, including
the security proof which shows that decryption is as hard as solving the so-called Unique Shortest
Vector Problem which was mentioned at the end of the previous chapter. Before continuing, we note
that all computations below are technically with fixed precision real numbers in 2−nZ. However,
for simplicity of exposition, we will suppress this fact and treat all quantities as infinite precision
real numbers.

2.2.1 Generating Keys

The private key will simply be a vector ~u chosen uniformly at random from the n-dimensional ball
of radius 1, {x ∈ Rn | ‖x‖ ≤ 1}.

Let m = n3 and select m vectors ~v1, . . . , ~vm independently at random according to the distribution
Hu, which is defined as follows:

• Let Q denote the n-dimensional cube [−n2n, n2n]n.

• For i ∈ Z, let Hi denote the (n− 1)-dimensional hyperplane consisting of the points ~x ∈ Rn

such that 〈~x, ~u〉 = i. Thus H0 = ~u⊥ and in general Hi = ~u⊥ + i ~u
‖~u‖ .

• Choose ~̀ uniformly from {~x ∈ Q | 〈~x, ~u〉 ∈ Z}. That is, choose a hyperplane Hi with
probability proportional to the (n − 1)-dimensional area of Hi ∩ Q, and then chose a point
uniformly at random from Hi ∩Q.

• Next, choose a perturbation ~δ
def=
∑n

i=1
~δi, where the ~δi are chosen uniformly at random from

the n-dimensional sphere of radius n−8.
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• Finally, the value of Hu is given by ~̀+ ~δ.

Hence, the ~vi are random perturbations (by at most n−7) of points that lie on the (n−1)-dimensional
hyperplanes that are perpendicular to ~u and whose distance from the origin is an integer multiple
of ‖~u‖.

The public key will be (~v1, . . . , ~vm), together with an index i0 ∈ [1, . . . , n2] such that
width(P (~vi0 , . . . , ~vi0+n−1)) ≥ 1

n2n, where P (vi0 , . . . , vi0+n−1) denotes the parallelepiped formed
by the vectors vi0 , . . . , vi0+n−1. In [AD96] it is shown that there exists such an i0 < n2 with high
probability.

2.2.2 Encryption/Decryption

Encryption is performed one bit at a time, as follows. The encryption of a ‘0’ is obtained by choosing
r1, . . . , rm randomly from {0, 1}, and then setting ~c =

∑m
i=1 ri~vi (mod P (vi0 , . . . , vi0+n−1)). Note

that a vector ~x can efficiently be reduced modulo a parallelepiped P (~b1, . . . ,~bn) by computing
~x − B

⌊
B−1~x

⌋
, where b~yc denotes the vector obtained by rounding all the entries of ~y toward

zero. The encryption of a ‘1’ is a point chosen uniformly at random from the parallelepiped
P (vi0 , . . . , vi0+n−1).

Decryption simply involves computing 〈~c, ~u〉. If 〈~c, ~u〉 is within 1
n of an integer, ~c is decrypted as a

‘0’, and otherwise ~c is decrypted as a ‘1’. Each ~vi is within n−7 of a hyperplane Hi by construction,
so
∑m

i=1 ri~vi is at most a distance mn−7 = n−4 from a hyperplane Hj , and the vectors of the
parallelepiped P are also each within n−7 of such a hyperplane. The assumption that the width
of P is at least 1

n2n, guarantees that even after reducing
∑m

i=1 ri~vi modulo the parallelepiped
P (vi0 , . . . , vi0+n−1), the resulting ciphertext ~c has the property that 〈~c, ~u〉 is within 1

n of an integer.
On the other hand, if ~c is an encryption of a ‘1’ then we expect the fractional part of 〈~c, ~u〉 to be
very close to uniformly distributed on [0, 1). Therefore, decryption consists of computing 〈~c, ~u〉,
and decrypting ~c as a ‘0’ if 〈~c, ~u〉 is within 1

n of an integer, and as ‘1’ otherwise. Hence, a ‘0’ is
always correctly decrypted and a ‘1’ may be incorrectly decrypted as a ‘0’ with probability at most
2
n .

The remarkable property of this encryption scheme is that it can be shown that the ability to
distinguish between encryptions of ‘0’ and encryptions of ‘1’ implies the ability to solve the Unique
Shortest Vector Problem for any lattice where the shortest vector is n8-unique. The proof of this
fact is rather involved and quite lengthy, so we cannot give it here. However, we will outline the
major steps of the proof in order to give some indication as to how such a reduction is feasible.
The details can be found in [AD96].

The first task is to show that the ability to distinguish between encryptions of ‘0’ and ‘1’ (i.e. given
t encryptions of b ∈ {0, 1} and t encryptions of 1 − b, determine with non-negligible probability
the value of b) implies the ability to determine whether a collection of encryptions, all of the same
bit, represent a ‘0’ or a ‘1’. This is accomplished by taking the collection of encryptions and
partitioning them into several disjoint subsets, and then pretending that these subsets represent
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valid public keys. If the encryptions all represent ‘0’, then this is very likely to be a valid assumption,
since encryptions of ‘0’ are constructed from points that lie close to the hyperplanes Hi, just as
the vectors ~vi of a public key. However, if the encryptions are of ‘1’, then the vectors will be
random and therefore they are unlikely to form a valid public key. Bearing this in mind, we
generate many encryptions of ‘0’ and of ‘1’ using of each the “public keys” that were constructed
from the partitioning of the original encryptions. By assumption, we can distinguish between
valid encryptions of ‘0’ and ‘1’ with non-negligible probability, and so if we run our supposed
distinguishing algorithm on these encryptions and a non-negligible fraction of the runs of the
algorithm correctly distinguish between encryptions of ‘0’ and ‘1’, then we conclude that the “public
key” was actually a valid public key, and hence the original encryptions were of ‘0’. Otherwise, we
conclude that the “public key” was not valid, and hence the original encryptions were of ‘1’.

Now let L be a lattice which has an n8-unique shortest vector. A class of random transformations
is constructed which, with non-negligible probability, carry the shortest vector of L to a vector in
the unit sphere (just like the private key u in the cryptosystem), while preserving the property that
the lattice has an n8-unique shortest vector. (In fact, these transformations consist of orthogonal
transformations together with a scaling factor; hence the n8-uniqueness is clearly preserved, as
orthogonal transformations are length-preserving.) By generating many such transformations and
applying them to L, we expect that, for a non-negligible fraction of the resulting lattices, the
shortest vector is contained within the unit sphere. If this is the case then the dual lattice of L,
L∗, when appropriately transformed (to account for the transformation applied to L) will have the
following structure: L∗ contains an (n − 1)-dimensional sublattice L∗′ with a basis all of whose
vectors are shorter than n8, and such that the distance between the hyperplane, H∗′, containing
L∗′ and all its cosets (i.e. the translations of the hyperplane H∗′ by the basis vector of L∗ that is
not in L∗′) are all separated by a distance of at least 1 from each other.

Next it is shown that the distribution of Hu is negligibly far (i.e. indistinguishable) from the
distribution ξ induced by choosing a random point on one of the cosets of H∗′ (from within a
large cube, as with Hu) and perturbing it in the same manner as in Hu. Hence, the ability to
distinguish between Hu and the uniform distribution implies the ability to distinguish between
ξ and the uniform distribution. Assuming this capability, a procedure is constructed that can
determine whether a vector in L∗ is contained in L∗′ or not. By applying this procedure to the
differences of many pairs of lattice points, then one can recover a basis for L∗′, which in turn reveals
the shortest vector of L which lies in the one-dimensional orthogonal complement of L∗′, by the
definition of the dual lattice.

2.2.3 Cryptanalysis

Although the Ajtai-Dwork cryptosystem is very appealing because of its security proof, the fact
that each ciphertext only encodes one bit raises some concerns as to its practical applicability.
Indeed, the cryptanalysis of Nguyen and Stern, which we shall examine below, only shows that the
parameters must be impractically large for the system to be secure in practice. Thus the major
achievement of the Ajtai-Dwork cryptosystem, its novel security proof, remains intact. Nonetheless,
this attack does highlight the complications that can arise when choosing the parameters for a
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cryptosystem, even one with a security proof.

In [NS98], Nguyen and Stern present the following attack whose goal is to find the private key ~u.
We assume that we have a public-key consisting of the vectors ~v1, . . . , ~vm, as defined above. Then
we construct the (n + m)×m matrix Lβ

Lβ
def=


β~v1 β~v2 · · · β~vm

1 0 · · · 0

0 1
...

...
. . . 0

0 · · · 0 1


for a parameter β ∈ R, and let Lβ be the lattice generated by the columns of Lβ .

By construction, we know that 〈~vi, ~u〉 is within n−7 of an integer Vi
def= d〈~vi, ~u〉c. Since n−7 is quite

small, if we can find an integral combination, λ1~v1 + · · ·+ λm~vm, of the ~vi that is very short, and
where the integer coefficients λi are not too large, then we are likely to have λ1V1 + · · ·+λmVm = 0.
This explains the choice of the lattice Lβ, since short vectors of Lβ correspond exactly to short
combinations of the ~vi where the coefficients are not too large. More precisely, the following theorem
is proved in [NS98]:

Theorem 2.1. Let ~x = (β(λ1~v1 + · · ·+ λm~vm), λ1, . . . , λm)T be a lattice point in Lβ, i.e. λi ∈ Z.
If n7‖

∑m
i=1 λi~vi‖ +

∑m
i=1 |λi| < n7, then

∑m
i=1 λiVi = 0. In particular, this equality is satisfied if

β2 ≥ 1
2n7−1

n14 and ‖~x‖2 < 1
2n7−1

n14.

Thus, every sufficiently short vector in Lβ gives λ1, . . . , λm satisfying λ1V1+ · · ·+λmVm = 0, and so
if we define ~V = (V1, . . . , Vm)T , and ~Λ = (λ1, . . . , λm), we have that 〈~Λ, ~V 〉 = 0, i.e. ~Λ is orthogonal
to ~V . Define ~V ⊥ to be the collection of all points in Zm that are orthogonal to ~V . It is not hard to
see that ~V ⊥ is an (m− 1)-dimensional sublattice of Zm and that (~V ⊥)⊥ is generated by an integer
multiple of ~V . In particular, if all the greatest common divisor of all the entries of ~V is 1 (which
is very likely to be the case) then (~V ⊥)⊥ is generated by ~V . Thus, if we can find m − 1 linearly
independent Λj by finding linearly independent short vectors in Lβ, then we obtain a basis for ~V ⊥.
This allows us to compute (~V ⊥)⊥ = ±~V using an m-dimensional cross product, i.e. the value of
the k-th coordinate of ±~V is given by (−1)k−1 times the determinant of the k-th (m− 1)× (m− 1)
minor of the matrix whose rows are the linearly independent vectors Λj . Recalling that the entries
of ~V are Vi = d〈~vi, ~u〉c, we recover a system of approximate linear equations:

· · · ~vT
1 · · ·

· · · ~vT
2 · · ·
...

· · · ~vT
m · · ·


u1

...
un

 ≈


V1

V2
...

Vm


Solving this (over-specified) system using only n values of ~vi and Vi gives an approximation u′ to
the private key, u. Let M denote an n × n matrix whose rows are n distinct ~vT

i . Since the ~vi

are chosen almost uniformly from a large cube, we expect that M−1 will have small entries; in
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particular, we expect that the approximation to ~u will be very good. Moreover, there are many
possible choices for M , so we may obtain many approximate solutions and choose the one that
performs the best. The empirical evidence from [NS98] suggests that this is not even necessary
and that a single choice of M is sufficient. In fact, the empirical results from [NS98] suggest that
the Ajtai-Dwork cryptosystem is not secure in practice for n ≤ 32. Since the public key in this
case of n = 32 is on the order of 20 megabytes, and ciphertexts encoding a single bit have a length
of 6144 bits, they conclude that without significant modification, the Ajtai-Dwork cryptosystem is
not practically viable. This being said, the real value in the Ajtai-Dwork cryptosystem was never
the promise of practical viability, but rather its novel security guarantee, which is unaffected by
this cryptanalysis.

2.3 The NTRU Cryptosystem

The first version of the NTRU cryptosystem was proposed by Hoffstein et al in 1996, and after
several refinements was updated in 1998 [HPS98]. This is the version we shall consider below.

The description of the NTRU cryptosystem is given entirely in terms of quotient rings of integer
polynomials, however there is a natural connection to lattices and lattice reduction, as we shall
soon see.

All computations are performed in the ring R = Zq[x]/(xn − 1), where Zq denotes the integers
modulo q.1 This has the practical advantage that an element a0 +a1x+ · · ·+an−1x

n−1 of R can be
represented as an n-tuple of integers [a0, a1, . . . , an−1]. Using this representation, addition in R is
performed componentwise, and multiplication (which we will denote by ∗) is a circular convolution:

a ∗ b =
n−1∑
k=0

 ∑
i+j≡k
mod n

aibj

xk

2.3.1 Generating Keys

Let L(a, b)def= {f ∈ R | f has a coeffs. equal to 1, b coeffs. equal to − 1 and all other coeffs. equal to 0}

Let df be an integer less than n/2. Then the private key f is a random element of L(df , df − 1).
For reasons that will soon be clear, we also require that f be invertible in R, i.e. f ∈ R×, and that
f be invertible when considered modulo p

def= 3.

Similarly, let dg be an integer less than n/2 and randomly choose g
R←L(dg, dg). The public key will

be h
def= f−1 ∗ g. The security of the cryptosystem will rely on the assumption that it is infeasible,

given h = f−1 ∗ g, to find a f ′ ∈ R× and g′ ∈ R satisfying h = f ′−1g′ and possessing small enough
coefficients that the decryption algorithm (described below) will still work.

1In practice currently, q is either 128 or 256, and n is 251, 347 or 503 (see www.ntru.com).
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2.3.2 Encryption/Decryption

To encrypt a message m ∈ {−p−1
2 , . . . , p−1

2 }
n ⊆ R, randomly choose φ

R←L(dφ, dφ), and compute
the ciphertext:

c = p · (φ ∗ h) + m

To decrypt the ciphertext, we first compute

f ∗ c = p · (φ ∗ g) + f ∗m

Let us assume that we have chosen the parameters df , dg, dφ and dm such that, with high probability,
the coefficients of p ·(φ∗g)+f ∗m (mod xn−1) are between −q/2 and q/2 (before reducing modulo
q). In this case, if we “center” f ∗c = p ·(φ∗g)+f ∗m (mod q), by choosing its coefficients between
−q/2 and q/2, and then reduce modulo p we obtain f ∗m (mod p), with only a small probability of
error. Recall that f was required to be invertible in Zp[x]/(xn−1), and call this inverse f−1

p . Finally,
if we apply f−1

p and take the result modulo p, we obtain m (mod p), and since all coefficients of m

are in {−p−1
2 , . . . , p−1

2 }, this allows us to recover m.

In the above decryption procedure, we assumed that df , dg and dφ were such that the coefficients of
p · (φ ∗ g) + fm (mod xn− 1) are between −q/2 and q/2 with high probability. While it is possible
to find appropriate values of df , dg, dφ and dm using elementary methods from probability theory,
the values that are found in this way are quite pessimistic, and so the values given in [HPS98],
are based on numerical experiments. For concreteness, we list the three parameter selections from
[HPS98]:

n p q df dg dφ

107 3 64 15 12 5
167 3 128 61 20 18
503 3 256 216 72 55

More recently, the authors of the NTRU cryptosystem have proposed a new variant where p is
actually chosen to be a small polynomial that is relatively prime to xn − 1 (instead of a small
integer relatively prime to q). This requires several other modifications to the encryption and
decryption procedures, but much of the structure is the same. We refer to the documentation at
[HPS] for the details.

2.3.3 Cryptanalysis

As of yet, we have been no mention of lattices in the above description of the NTRU cryptosystem.
However, if one considers p ·h as a linear map (i.e. an n×n matrix over Zq) acting on φ considered
as an n-dimensional vector in {−1, 0, 1}n ⊆ Zn

q , then the encryption process can be thought of as
perturbing the “lattice point” (p · h) ∗ φ by m. Thus, given a ciphertext c, the “closest” point to
c of the form (p · h), is likely to be at a distance m from the ciphertext. However, the attacks we
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shall consider are to recover a decryption key f ′ given the public key h and consider a different,
albeit related lattice construction.

Let H ∈ Zn×n
q be the matrix corresponding to the linear map a 7→ h ∗ a in R, and note that

H = F−1G where F and G are the linear maps a 7→ f ∗a and a 7→ g ∗a, respectively. Now consider
the 2n-dimensional Coppersmith-Shamir lattice, LCS , generated by the columns of

LCS def=
[

I 0
H qI

]
=



1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · 0
h0 hn−1 · · · h1 q 0 · · · 0
h1 h0 · · · h2 0 q · · · 0
...

...
. . .

...
...

...
. . .

...
hn−1 hn−2 · · · h0 0 0 · · · q


Proposition 2.2. Let f ◦ g ∈ Z2n

q denote the concatenation of f and g as vectors in Zn
q . Then

f ◦ g ∈ LCSZn.

Proof. Consider f and g as a vectors in {0, . . . , q − 1}n. Similarly, consider the linear map H :
R → R defined by a 7→ h ∗ a. H can be thought of as a matrix in Zn×n

q , or equivalently as a
matrix with entries in {0, . . . , q − 1}. Then Hf = g + q · ~v, where ~v ∈ Zn. Therefore, we have that
C(f ◦ (−~v)) = f ◦ g is in LCS = LCSZn.

From the preceding proposition, the general method of attack should be clear. Since f and g have
small coefficients by construction, we expect f ◦ g to be a short vector in the lattice LCS . Indeed,
this attack, introduced by Coppersmith and Shamir, was the first main attack against the earliest
version of NTRU (see [DC97]). In light of this attack, the sucurity parameters (n, df , dg, dφ) were
adjusted, and in [HPS98] a part of the justification of the security of the NTRU cryptosystem
is that the parameters were chosen to make such an attack infeasible using contemporary lattice
reduction techniques.

We now turn to a variant of this attack, due to May in [May99], that has forced the creators of the
NTRU cryptosystem to increase the recommended parameters yet again.

Recall that the LLL algorithm guarantees that the first vector of the reduced basis is within a
factor of 2

n−1
2 of the length of the shortest vector in the lattice. Therefore, if one has a lattice

where the second shortest vector is more than 2
n−1

2 times as long as the shortest vector, then the
LLL algorithm must return the shortest vector. This case is rather extreme since 2

n−1
2 is very

large, even for moderate values of n. However, a similar effect is noticeable for more reasonable
lattices. If we denote by λ1 the length of the shortest non-zero lattice vector, call it ~v, and by
λ2 the length of the shortest lattice vector that is linearly independent of ~v, then empirically, the
quality of the basis returned by lattice reduction algorithms appears to improve as the quantity λ2

λ1

gets larger. Therefore, one might try to artificially augment the “gap” between the shortest vector
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and the second shortest vector in order to obtain shorter vectors via lattice reduction. This is the
approach taken by May, which proceeds as follows.

Let ~v = f ′◦g′ be a shortest vector in LCS and let σ ∈ Sn be the cyclic permutation [a1, a2 . . . , an] 7→
[an, a1, . . . , an−1]. It is not hard to see, from the cyclic structure of LCS , that σk(f ′)◦σk(g′) ∈ LCS

for all 0 ≤ k < n, and that all these vectors have the same norm. This is the situation we wish to
avoid, however, since this means that λ2

λ1
= 1. Therefore, we consider the lattice generated by the

following variant of LCS

Lr(θ) def=



1 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

...
...

...
...

0 · · · 1 0 · · · 0 0 · · · 0
θ · h0 · · · θ · h1 θ · q · · · 0 0 · · · 0

...
...

...
. . .

...
...

...
θ · hr−1 · · · θ · hr 0 · · · θ · q 0 · · · 0

hr · · · hr+1 0 · · · 0 q · · · 0
...

...
...

...
...

. . .
...

hn−1 · · · h0 0 · · · 0 0 · · · q



Lr(θ) is obtained by taking LCS and then multiplying rows n + 1 though n + r by θ
def= q + 1.

This has the effect of lengthening all vectors whose n + 1 through n + r coefficients are not all
zero. The hope is that g′ will have a unique “run” of r zeros, i.e. that there is exactly one index
i ∈ [1, 2, . . . , n] such that g′i = g′i+1 = · · · = g′i+r−1 = 0. If this is the case, then all of the rotations
σk(f ′) ◦ σk(g′) will be lengthened to have length at least

√
2df − 1 + (q + 1)2 + 2dg − r, except for

one of them which will still have length
√

2df − 1 + 2dg.

By using this approach, in conjunction with some other techniques described in [May99], May
showed that NTRU encryptions using the small parameter value of n = 107 are not secure, and as
a result, the NTRU specification now suggests values of n ∈ {251, 347, 503}.

In a follow-up paper, [MS01], May and Silverman discuss a natural generalization to this approach
where, instead of looking for unique “runs”, one chooses a random subset of coordinates with the
hope there is a unique cyclic shift of g where all these coordinates are zero. Much of the analysis is
similar to the case of the “run” lattice, however this attack has the benefit that it is more difficult to
protect against, whereas it is relatively easy to ensure that the longest zero-run in g is not unique.

Finally, we should note the particularly small key-size for the NTRU cryptosystem. In the GGH
scheme a complete n × n matrix (at least O(n2) bits) consisting of the public basis vectors is
given, and in the Ajtai-Dwork cryptosystem, m (n-dimensional) vectors are given representing
O(log(n2n) ·n ·m) O(n5 log n) bits. However, in the NTRU scheme only O(n log q) bits are required
to obtain (implicitly) a lattice of dimension 2n. This is undoubtedly one of the reasons the NTRU
cryptosystem is still viable today, albeit with larger parameters than the original proposals.
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Conclusion

In the preceding chapters we have seen how lattice reduction is on the one hand an intractable
problem and on the other hand a very powerful cryptanalytic tool with algorithms that can perform
surprisingly well in practice. To a certain extent, this dichotomy of applications illustrates how
lattice reduction is not a very well understood problem. For instance, Micciancio’s result shows
that the shortest vector in a lattice cannot be approximated within a factor of

√
2, whereas the

LLL algorithm only guarantees an exponentially large approximation factor. These bounds leave
open the question of whether a polynomial approximation to the shortest vector can be achieved
in polynomial time, and if so, how small the degree of the approximation factor can be. Of course,
the complementary problem is to try to improve the inapproximability results to show that the
shortest vector cannot be approximated to within some factor which is an increasing function of
the dimension. However, in [GG97], Goldreich and Goldwasser prove that if it can be shown, via
a many-one/Karp reduction, that approximating the shortest vector to within a factor of

√
n is

NP-hard, then the polynomial hierarchy collapses. Therefore, it seems unlikely that much stronger
inapproximability results about SVP will be found.

We have also seen how cryptographic constructions based on lattice problems such as the GGH and
Ajtai-Dwork cryptosystems, require lattices of very high dimension before benefitting from security
suggested or implied by the intractability of lattice reduction. This begs the question of whether
lower-dimensional lattice problems can be constructed that isolate the very hardest instances of SVP
or CVP. An alternative approach suggested by the NTRU cryptosystem. Perhaps it is inevitable
that the lattices must have very large dimensions to construct secure encryption schemes but at
the same time one may find lattices with a particular structure (such as the Coppersmith-Shamir
lattice, LCS) that allow for a compact representation while still retaining the resistance to reduction
of the general lattices of the same dimension.

These questions highlight some of the weaknesses of current lattice cryptosystems as well as the
gap in knowledge regarding the complexity of lattice problems. Nonetheless, the resilience of
the current version of the NTRU cryptosystem and the theoretical significance of results such
as the Ajtai-Dwork security proof and Micciancio’s inapproximability result offer hope that the
intractability of lattice reduction may ultimately provide a viable alternative to the assumptions
that integer factorization and the discrete logarithm problem are intractable. On the other hand,
all is not lost if advances in lattice reduction techniques improve to the point that no reasonable
lattice cryptosystem may be constructed, for as we have seen, lattice reduction is a powerful tool
in its own right and is applicable to many problems other than attacks on lattice cryptosystems.
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