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Abstract: 
 
Copulas provide a convenient way to represent joint distributions. In fact the joint distribution 
function can be expressed as the copula function applied to the separate individual distribu-
tions. That is, F(x1, x2, . . .xm) = C[F1(x1), F2(x2), . . . Fm(xm)] where C is the copula function. 
Background information on copulas is covered in a number of papers, and will be largely as-
sumed here.  
 
The starting point of this topic is bivariate copulas, but most of these do not extend well into 
higher dimensions. For a multivariate copula for insurance related variates you would like to 
be able to feed in a correlation matrix of the variates as well as have some control over the 
degree of correlation in the tails of the distributions. Often more than two related variates are 
needed, such as losses in several lines of insurance. 
 
This paper focuses on the t-copula, which meets these minimum requirements, but just 
barely. You can input a correlation matrix and you do have control over the tail behavior, but 
you only have one parameter to control the tail, so all pairs of variates will have tail correla-
tion that is determined by that parameter. The normal copula is a limiting case, in which the 
tails are ultimately uncorrelated if you go out far enough. 
 
The structure of the paper is to jump right in to a discussion of the t-copula in the bivariate 
case, then extend this to higher dimensions. A trivariate example is given using cat model 
output for three lines of insurance. Methods for selecting parameters and testing goodness of 
fit are discussed in this context, using descriptive functions. 
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Fit to a t – Estimation, Application and Limitations of the t-copula 

The Bivariate t-Copula 
The bivariate t-copula has two parameters that control the tail dependence and the degree of 
correlation separately. The t-distribution with n degrees of freedom is defined by: 
 
 fn(x) = K1(1+x2/n)

-(n+1)/2
, with K1=Γ(1/2+n/2)(nπ)-1/2/Γ(n/2). 

 
Here n is often an integer, but doesn’t have to be. The distribution is symmetric around zero 
and can be calculated by: 
 
 Fn(x) = ½ + ½ sign(x)betadist[x2/(n+x2), ½, n/2],  
 
where betadist defines the beta distribution, as in Excel.   

An example of the 
density of the t-copula is graphed in Figure 1. The density of the bivariate t-copula with n de-
grees of freedom and the correlation parameter ρ is defined as:  
 
c(u,v; n,ρ) = K2[(1+s2/n)(1+t2/n)](n+1)/2{1+[s2– 2ρst +t2]/[(1–ρ2)n]}-1-n/2  
 
with K2 = ½[Γ(n/2)/Γ(0.5+n/2)]2n(1-ρ2)-1/2 and s=Fn

-1(u), t=Fn
-1(v).  

 
The inverse t-distribution needed for this can be calculated with an inverse beta by s =   
sign(u -½)n1/2[ – 1+1/betainv(|2u-1|,½, n/2)]-1/2.  
 

0,0 

1,1

0,1 

ρ=0.5

Figure 1
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The concentrations 
of probability near [0,0] and [1,1] are seen in many copulas, but the smaller concentrations 
around [0,1] and [1,0] are more unusual. Figure 2 shows the ratio of densities for n=5 to 
n=50. The latter is similar to the normal copula density, which approaches zero at [0,1] and 
[1,0]. Thus the density ratio is highest in those regions, even though it is well above unity 
around [0,0] and [1,1]. With a given correlation parameter or matrix, the linear correlation 
and Kendall’s τ for the t-copula are the same for any n as for the normal copula (n → ∞). The 
lower values of n produce greater upper and lower tail dependence with the same overall cor-
relation essentially because they put more weight in all the corners. The additional weight in 
the off-diagonal corners cancels out the additional tail dependence, keeping the overall corre-
lation the same. 
 
Kendall’s τ is related to ρ by τ = (2/π)arcsin(ρ). Also the right tail dependence measure R, 
defined as limit z →1Pr(U>z|V>z), is given by: 
 

R/2 = 1–Fn+1{[(n+1)(1–ρ)/(1+ρ)]0.5}.  
 
Thus R can be expressed as a function of τ and n, as graphed in Figure 3. Even zero τ can 
give a positive tail dependence with this copula. The tail dependence can approach zero for 
any τ by taking n large, thus approximating the limit of the normal copula, which has tail de-
pendence of zero.  

The Multivariate t-Copula 
To define the multivariate copula, suppose there are m variates, and u is a vector of m prob-
ability values (numbers in [0,1]). Let s be the vector of the univariate t-quantiles of u with n 
degrees of freedom, that is s=Fn

-1(u) for each element of s and u. Also let Σ be an m x m 

ρ=0.5

Figure 2
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correlation matrix with determinant d. Then the m-dimensional t-copula has density: 
 

 c(u; n, Σ) = Km[Πi=1
m(1+si

2/n)](n+1)/2(1+s’ Σ
-1

s/n)-( m+n)/2  
 
where  Km= Γ[(m+n)/2][Γ(n/2)]m–1[Γ(½ +n/2)]-–md–1/2. 
 
By starting with a Kendall’s τ coefficient matrix Τ, the correlation matrix needed here can be 
specified by Σ = sin(Τπ/2). Thus this copula has complete flexibility in its correlation struc-
ture. However there is only one n used, so the tail dependence will be determined by that n 
for all pairs of variates. In the graph above, all the tail-dependence measures for all pairs of 
variates would fall on the same vertical cross section, determined by the value of n used for 
the copula. Thus the pairs with higher τ will have higher R as well. 
 
The univariate or multivariate t distribution can be characterized (and simulated) by a (possi-
bly multivariate) normal distribution divided by a multiple of the square root of an independ-
ent univariate chi-squared distribution. When generating it in this way, if a low draw comes 
up for the chi-squared variate, large values of the t variate can be produced, even if the nor-
mal values were not particularly large. In the multivariate case then all the t variates can be 
jointly large even if they were not originally correlated. That illustrates why the tail-
dependence can be somewhat high even with zero τ. An example might be where the recipro-
cal of the t variate represents the inflation rate, which hits all the lines. This effect is some-
times called a common shock, i.e., the common shock of a large inflation rate can induce a 
correlation among otherwise independent lines. 
 
More precisely, to generate a vector of probabilities from the multi-variate t-copula, first gen-
erate a multi-variate normal vector with the same correlation matrix, then divide it by (y/n)0.5 
where y is a number simulated from a chi-squared distribution with n degrees of freedom. 
This gives a t-distributed vector, and the t-distribution Fn can then be applied to each element 
to get the probability vector.  

Figure 3 
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The ratio y/n is a scale transform of the chi-squared variate, so is a gamma variate. If the 
gamma density is parameterized to be proportional to xα–1e–x/β, then y/n has parameters β = 
2/n and α = n/2. This is a distribution with mean 1. It can be simulated easily if an inverse 
gamma function is available, as in some spreadsheets. 
 
Because a power of the gamma deviate is a divisor, a factor is being applied that is actually 
inverse transformed gamma distributed. The inverse transformed gamma distribution in α, τ, 
θ has density proportional to  exp(–(θ/x)τ )/x α +1. The factor (n/y)0.5 applied to the normal 
variates is distributed inverse transformed gamma in α = n, τ = 2, and θ = (n/2)1/2 . This has a 
mean greater than unity and an inverse power tail with power n, and so is a heavy-tailed dis-
tribution. Especially when n is small, this gives the possibility of large values of the factor 
occasionally being applied to all the normal draws, giving simultaneous large values of all the 
variates. 

Example – Hurricane Losses 
Parameter estimation issues and applications can be illustrated by a sample of losses simu-
lated from a hurricane model. The simulation generated losses under three lines of insurance: 
residential property (R), commercial property (C) and automobile (A). Naturally  these are 
highly correlated losses, as hurricane losses from a stronger storm tend to be higher in all 
three lines. The strength of the storm could be considered to be the common shock that corre-
lates all the lines. Having a large generated sample like this does not require a fitted copula to 
be useful in loss estimation, so in practice there would be little need to fit a copula to it. It is a 
useful dataset for illustrating fitting concepts, however. 
 
The empirical trivariate copula can be calculated at any 3-vector of probabilities by 
counting the proportion of the sample triplets of empirical probabilities that are less in 
each index. Each of the three bivariate empirical copulas from the three pairs of vari-
ables can be calculated similarly. The averages of the bivariate copulas give estimates 
of the τ correlations by the relationship τ = 4E(C) – 1, where E(C) is the expected value 
of the copula.. This scaling of the mean value of the copula can be extended to define 
higher dimensional analogues of τ by requiring that τ = 0 for the independence case 
and τ = 1 for perfect correlation. The scaling for m-dimensions that does this is τ = 
[2mE(C)–1]/[2m – 1–1]. (There are other possible multi-variate extensions of τ, but they 
will not be used here.) For the hurricane data, these τ’s are: 
 
 AC AR RC ARC 

τ 82.4% 84.4% 87.6% 84.8% 
 
The bivariate τ’s provide estimates of the correlation ρ for each bivariate copula, and 
thus for the correlation matrix for the trivariate copula, using ρ = sin(πτ/2). For the 
sample, these are: 
 
 AC AR RC 

ρ .96 .97 .98 
 
To estimate n, the tail behavior is key. One possible approach might be to estimate R, the 
limit z →1Pr(U>z|V>z). However this is difficult to estimate from data because the function 
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R and L Functions
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R(z), defined as Pr(U>z|V>z), can drop rapidly for z near 1, and there is less and less data to 
use the closer z gets to 1.  
 
Note that R(z)= Pr(U>z & V>z)/Pr(V>z). Since Pr(V>z) = 1– z = Pr(U>z), U and V can be 
switched in the definition of R(z). A similar concept can be defined for the multivariate cop-
ula: 
 

R(z)= Pr(U>z & V>z & W>z)/z = Pr(U>z & V>z|W>z) 
 

Because of the symmetry in the first equation, U, V, and W can be swapped around at will in 
the second equation. This function provides a measure of the overall tail dependency of the 
three variates, and it can be generalized to higher dimensions. A similar tail dependency func-
tion can be defined for the left tail: 
 
 L(z) = Pr(U<z & V<z & W<z)/z = C(z,z,z)/z, and similarly in the bivariate case.  
 
The empirical versions of these functions are graphed in Figure 4. From the graph, the right 

and left tail functions are clearly not symmetrical. This would rule out the t-copula, 
which is. However most issues concern the large loss cases, so a copula approximat-
ing the right side would be most appropriate, and the t-copula might work for this. 
 
One possibility would be to estimate the t-copula correlations and degrees of freedom 
by maximum likelihood. The likelihood function for a parametric copula at a point in 
the sample is the density of the parametric copula computed at the empirical copula 
vector for that point, so can be readily calculated. 
 
However in this case, MLE is not likely to give the intended fit, in that it would be af-
fected by the smaller claims that do not appear to mirror the large claims. So the sam-
ple correlations come back as a starting reference point, even though they use the 
whole distribution. 

Figure 4 
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Autom obile -Com m erc ia l Em pirica l and Fitted R(z) w ith Observed Tau
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To test how well the 
sample correlations 
match the larger 
losses, a simulation 
can be performed 
with the sample 
correlations and a 
selected n, and the 
simulated R(z) com-
pared to the 
sample’s. The 
arbitrary choice of 
degrees of freedom 
most affects the ex-
treme percentiles, so 

this comparison was initially cut off at the 85th percentile, with a selected n=20. The 
AC, AR, and RC bivariate comparisons are graphed in Figures 5, 6, and 7. 

 
 The AR R(z) 
comparison is very 
close by this meas-
ure, while the other 
two pairs do not fit 
very well.  
 
To see how much 
this is influenced by 
the choice of 
correlations, a few 
correlations were 
tested by this same 

methodology to see how well they work. The better fitting selections for AC and RC 
were a bit lower 
than the overall cor-
relations. The AC. 
AR, and RC fits are 
shown in Figures 8 – 
10, again with n=20. 
 

While there are still 
some issues with the 
fits for smaller val-
ues of z, they are 
much better for the 
large losses, as in-

Residential-Commercial  Empirical and Fitted R(z) with Observed Tau
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Automobile-Commercial Empirical and Fitted R(z) with Selected Tau
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intended. This case 
was not cut off at 
85%, and some 
simulation instab-
ility shows for the 
larger values of z. 
 
 
 
 
 
 
 

  AC AR RC 
Sample ρ .96 .97 .98 
Selected ρ .94 .97 .96 

Figure 8 

Figure 9 

Figure 10
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Due to the symmetry of the t-copula, R(z) = L(1 – z), and L can be calculated directly 
from the copula function. However, even though the t-copula is easy to simulate, the 
copula function is difficult to calculate, as the integration is difficult near 0. Numerical 
integration relying on simulation is often used for this. Figure 11 shows the L function 
for the ρ’s fit above for a few values of n using this approach. It is only for small val-
ues of z that n makes a difference in the L and R functions, at least for large values of 
ρ. The ρ itself does affect the functions for all values of z. 

Figure 12 looks at L(z) for z [0.05 for these same ρ’s and a few n’s. It is on a log scale 
to illustrate the behavior of L for very small z’s. For z in this range, which is shown 
down to ln(z) = -20, n is at least as important as ρ in influencing the value of L(z). 
Also, the function declines very slowly even for n=50. With these values of z the tails 
become less determined by ρ, but only in the very extreme tail, beyond the area of 
practical concern. 
 
To select a value of n, the empirical R functions were evaluated at z=0.005 and 
z=0.01, and n’s sought to best match. For the RC pair with ρ = 96%, the best n was 
41.5. For the other cases, n=500 worked as well as anything, suggesting a normal 
case. The target and fitted R(z)’s are shown for each pair in the table below. The RC 
fit is best. The other two fit ok at z = 0.01, but drop off for smaller z. That could be a 
sample size problem at this level. 
 
Only one value of n is used in the t-copula, so a compromise value has to be selected. 
Perhaps a value near 42 would be appropriate. This works for RC but imposes too 
much tail association for the other pairs. This is only in the extreme tail, however, so 
might not be problematic. 

L(z) for rho=94%, 96% & 97% and n=10, 15, 20, & 25
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L(z) for rho=94%, 96% & 97% and n=10, 25, 50 and z = .05 and less
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Summary 
The functional form of the t-copula is somewhat complicated, but most of the key functions 
are readily available in spreadsheets and statistical packages. Simulating samples is quite 
easy, as this just uses a simple adjustment to normal copula samples. 
 
Estimating parameters from data is more problematic. If the data is symmetric, maximum 
likelihood would be a good choice. In that case, a comparison of the empirical and fitted R 
and L functions could be used to evaluate goodness of fit. 
 
When the right and left tails are quite different the t-copula would not usually be indicated, 
but if only the right tail behavior is important in practice, a fit to that could be sought. Finding 
parameters that match the empirical and fitted R function is a reasonable way to do that. In 
the sample data reviewed, finding a match for the correlation matrix was relatively straight-
forward, but finding the best n was more difficult. For the high correlations found in this 
sample, different values of n affected R(z) only in the very extreme tail – even beyond where 
most reinsurance interest would be. Since that is where the data is most scarce, reliable fits 
are difficult. However the choice of n is not too critical for the same reason. 
 
The main practical obstacle to the use of the t-copula is that there is only one parameter – n – 
to control tail association, and different pairs of variates might have different indicated n’s. 
Computationally the biggest problem is calculating C for extreme values. This would be nec-
essary only for trying to fit parameters to the extreme tail, however. 

Target/Fit 94% (AC) 97% (AR) 96% (RC) 
0.005 .54 / .61 .52 / .68 .693 / . 695 
0.01 .61 / .64 .68 / .70 .718 / .715 


