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ABSTRACT 

We use a doubly stochastic Poisson process (or the Cox process) to model the claim arrival process for 
catastrophic events. The shot noise process is used for the claim intensity function within the Cox process. The 
Cox process with shot noise intensity is examined by piecewise deterministic Markov process theory. We apply 
the Cox process incorporating the shot noise process as its intensity to price a stop-loss catastrophe reinsurance 
contract. The asymptotic (stationary) distribution of the claim intensity is used to derive pricing formulae for a 
stop-loss reinsurance contract for catastrophic events. We achieve an absence of arbitrage opportunities in the 
market by using an equivalent martingale probability measure in the pricing model for catastrophe reinsurance 
contract. The Esscher transform is employed to change the probability measure. 
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1. INTRODUCTION 

Insurance companies have traditionally used reinsurance contracts to hedge themselves 
against losses from catastrophic events. During the last decade, the world has experienced a 
higher level of catastrophic events both in terms of frequency and severity. Some of the 
recent catastrophes are Hurricane Andrew (USA 1992) and the Kobe earthquake (Japan 1995) 
(see Booth (1997)). This has had a marked effect on the reinsurance market. Such events 
have impacted the profitability and capital bases of reinsurance companies, some of which 
have withdrawn from the market, and others have reduced the level of catastrophe cover they 
are willing to provide. 
In the early 1990s, some believed that there was undercapacity provided by the reinsurance 
market. Some investment banks, particularly US banks, recognised the opportunities that 
existed in the reinsurance market. Through their large capital bases the investment banks 
were able to offer alternative reinsurance products. This caused reinsurance companies to 
assess their strategies for the type of products offered to the market and emphasised the need 
for an appropriate pricing model for reinsurance contracts. 
Let K ,  be the claim amount, which are assumed to be independent and identically distributed 
with distribution function H ( u )  ( u  > 0) then the total loss excess over b, which is a retention 
limit, up to time t is 
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where N ,  is the number of claims up to time t and c K ,  - b = Man N i  - 6,  0 . )+ ) 
N, 

Let C, = c K i  be the total amount of claims up to time t. Then 
i=l 

[ Hi -b ) .  = (c, 
Therefore the stop-loss reinsurance premium at time 0 is 

where the expectation is calculated under an appropriate probability measure. Throughout the 
paper, for simplicity, we assume interest rates to be constant. 
In insurance modelling, the Poisson process has been used as a claim arrival process. 
Extensive discussion of the Poisson process, from both applied and theoretical viewpoints, 
can be found in Cram& (1930), Cox & Lewis (1966), Buhlmann (1970), Cinlar (1975), and 
Medhi (1982). However, there has been a significant volume of literature that questions the 
appropriateness of the Poisson process in insurance modelling (see Seal (1983) and Beard et 
d(1984)) and more specifically for rainfall modelling (see Smith (1980) and Cox & Isham 
(1986)). 
For catastrophic events, the assumption that resulting claims occur in terms of the Poisson 
process is inadequate. Therefore an alternative point process needs to be used to generate the 
claim arrival process. We will employ a doubly stochastic Poisson process, or the Cox 
process, (see Cox (1955), Bartlett (1963), Serfozo (1972), Grandell (1976, 1991), Bremaud 
(1981) andLando (1994)). 
The shot noise process can be used as the parameter of doubly Stochastic Poisson process to 
measure the number of claims due to catastrophic event (see Cox & Isham (1980,1986) and 
Kliippelberg & Mikosch (1995)). As time passes, the shot noise process decreases as more 
and more claims are settled. This decrease continues until another catastrophe occurs which 
will result in a positive jump in the shot noise process. The shot noise process is particularly 
useful in the claim arrival process as it measures the frequency, magnitude and time period 
needed to determine the effect of the catastrophic events. Therefore we will use it as a claim 
intensity function to generate doubly stochastic Poisson process. We will adopt the shot noise 
process used by Cox & Isham (1980): 

where: 
i catastrophe 
2, initial value of A 
y ,  jump size of catastrophe i (i.e. magnitude of contribution of catastrophe i to intensity) 

where E ( y , )  <= 
s, time at which catastrophe i occurs where s, < t < 
6 exponential decay which never reaches zero 
p the number of catastrophes in time period t. 
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The piecewise deterministic Markov processes theory developed by Davis (1984) is a 
powerful mathematical tool for examining non-diffusion models. We present definitions and 
important properties of the Cox and shot noise processes with the aid of piecewise 
deterministic processes theory (see Dassios (1987) and Dassios & Embrechts (1989)). This 
theory is used to calculate the distribution of the number of claims and the mean of the 
number of claims. These are important factors in the pricing of any reinsurance product. 
We use the asymptotic (stationary) distribution of the claim intensity to derive pricing model 
for a stop-loss reinsurance contract for catastrophic events. Their application in computing 
the premiums will be illustrated. 
Harrison & Kreps (1979) and Harrison & Pliska (1981) launched the approach for the pricing 
and analysis of movements of the financial derivatives whose prices are determined by the 
price of the underlying assets. Their mathematical framework originates from the idea of 
risk-neutral, or non-arbitrage, valuation of Cox & Ross (1976). 
A reinsurance contract is similar to a financial derivative in that its value is determined by the 
underlying claim arrival process. Sondermann (199 1) introduced the non-arbitrage approach 
for the pricing of reinsurance contracts. He proved that if there is no arbitrage opportunities 
in the market, reinsurance premiums are calculated by the expectation of their value at 
maturity with respect to a new probability measure and not with respect to the original 
probability measure. This new probability measure is called the equivalent martingale 
probability measure. Cummins & Geman (1995) also employed the non-arbitrage pricing 
technique. Besides, Aase (1994) and Embrechts & Meister (1995) discussed pricing 
techniques such as the general equilibrium approach and the utility maximisation pricing. 
If the underlying stochastic process is not involved with jump structure (so called complete 
case), the fair price of a contingent claim is the expectation with respect to exactly one 
equivalent martingale probability measure (i.e. by assuming that there is an absence of 
arbitrage opportunities in the market). However doubly stochastic Poisson process has jump 
structures, we lose completeness and there will be infinitely many equivalent martingale 
probability measures. It depends on insurance companies’ attitude towards to risk which 
equivalent martingale probability measure should be used. Therefore it is not the purpose of 
this paper to decide which one to use. 
One of the methods to change the probability measure is the Esscher transform. Gerber & 
Shiu (1996) priced derivatives using the Esscher transform to go from the original probability 
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measure to the equivalent martingale probability measure. We use this approach for the 
pricing of stop-loss reinsurance contracts for catastrophic events. 

2. DOUBLY STOCHASIC POISSON PROCESS AND SHOT NOISE PROCESS 

Under doubly stochastic Poisson process, or the Cox process, the claim intensity function is 
assumed to be stochastic. The Cox process is more appropriately used as a claim arrival 
process as catastrophic events should be based on a specific stochastic process. However, 
little work has been done to further develop this assumption in an insurance context. We will 
now proceed to examine the doubly stochastic Poisson process as the claim arrival process. 
The doubly stochastic Poisson process provides flexibility by letting the intensity not only 
depend on time but also allowing it to be a stochastic process. Therefore the doubly 
stochastic Poisson process can be viewed as a two step randomisation procedure. A process 
A, is used to generate another process N,  by acting as its intensity. That is, N ,  is a Poisson 
process conditional on A, which itself is a stochastic process (if A, is deterministic then N ,  is 
a Poisson process). 
Many alternative definitions of a doubly stochastic Poisson process can be given. We will 
offer the one adopted by Bremaud (1981). 

Definition 2.1 Let (R, F ,  P )  be a probability space with information structure F. The 
information structure F is thefiltration, i.e. F ={St ,  tE [O,T]} .  F consists of 0-algebra's 3, 
on R, for any point t in 'the time interval [0, TI, representing the information available at 
time t. Let N,  be a point process adopted to a history 3, and let 2, be a non- negative 
process. Suppose that 2, is 3,-measurable, t 2 0 and that 

j;l,ds < 00 almost surely (no explosions). 
0 

Ifforall OSt ,  S t ,  and ~ E Y Z  

then N,  is called a 3,-doubly stochastic Poisson process with intensity At .  

(2.1) gives us 

I 

Now consider the process X, = IAsds (the aggregated process), then from (2.2) we can 

easily find that 
0 

E(e~,2-~t l  ) = E I e - ( I - e x X , 2 - X , , )  1. (2.3) 
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(2 .3)  suggests that the problem of finding the distribution of N , ,  the point process, is 
equivalent to the problem of finding the distribution of X,, the aggregated process. It means 
that we just have to find the p.g.f. (probability generating function) of N ,  to retrieve the m.g.f. 
(moment generating function) of X, and vice versa. 
The three parameters of the shot noise process described in the previous section are 
homogeneous in time. We are now going to generalise the shot noise process by allowing 
three parameters to depend on time. Therefore we assume that act), f i t )  and G ( y ; t )  are all 
Riemann integrable functions of t and are all positive. Furthermore the rate of jump arrivals, 
p(t) ,  is bounded on all intervals [0, t) (no explosions). 6(t)  is the rate of decay and the 
distribution function of jump sizes for all t is G ( y ;  t )  ( y > 0) .  If the jump size distribution is 
exponential, its density is g ( y ; t )  =(a+ p")exp{-(a+ p ' )y } ,  y > 0 ,  a+ p" > 0 (i.e. 
y> -me-"), a special case that will be quite useful later. 
If A, is a Markov process the generator of the process (A,, t )  acting on a function f ( R J )  
belonging to its domain is given by 

differentiable w.r.t. x ,  A, t for all x ,  n , 2 ,  t and that f (+, A + y,.)dG( y ;  t )  - f (., A,.) I1 

The generator of the process (X,,a,,t) acting on a function f ( x , l , t )  belonging to its 
domain is given by 

< 00 

Also the generator of ( N ,  ,A,, t )  acting on f (n ,  1, t) is given by 
af as 
dt 31 0 

- 
A f (n ,a . , t )  =-+a[m+ i m -  f (n ,a , t ) i -~( t )a - -+p(r ) [ l f (n ,a+  y , t ) d c ( y ; t )  - f(n,a,t)i.  

(2.6) 
For f ( x , n , R , t )  to belong to the domain of the generator A, it is sufficient that f ( x , n , R , t )  is 

Let us evaluate the Laplace transform of the distribution of X,, N ,  and A, at time t. 

Theorem 2.2 Let X, and 1, be as defined. Also consider constants k and v such that k 2 0 
and ~2 0,  then 

exp(-vX I ) exp [-{ ke A ( 1 )  - ve A(') j e-A(r)dr} A, ] exp[ p (  s)[l - { keA(') - yeA(') ; e-A(r) dr; s)]ds] 
0 0 0 

- r 

is  a martingale where i ( u ;  s )  = je-"ydG( y ;  s) and A(t)  = JS(s)ds  . 
0 0 

Proof 
From (2.5) f ( x , A , t )  has to satisfy A f  = O  for it to be a martingale. 
- 
f = e-vxe-A(r)AkR(l) we get the equation 

h 

- U ' ( t )  + R ' ( t )  -Av+ G(t)AA(t) + p ( t ) [ g { A ( t ) ; t )  - 11 = 0 
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and solving (2.8) we get 
t 

A(t) = IceA''' - veA't'~e-A'r'dr and R(t )  = jp(s)[l-  ;(keA(') - veA'""-A'r'dr;s)]d~ 
0 0 0 

f 

Put A( t )  = jG(s)ds and the result follows. 
0 

Let us assume that G ( t )  = 6 throughout the rest of this paper. 

Corollary 2.3 Let X , ,  N,  and A, be as defined. Also let v, 20, v, 20, v2 0, 01 81 1. 
Then 
E ( e - v ! ( x t 2 - x t I )  -'2& 

e IxrI 1 
12 

11 
, = exp[-{%+ (v,  -%)e-6(r2-f1)}A,l ]exp[-,lp(s)[l-;{?+ (v, - ~ ) e - 6 ( 1 2 - s ) ; s } ] d s ]  (2.9) 

and 
~ { d ~ ~ - ~ J e - ~ ~ l 2  I N , ,  ,arl 1 

12 

r1 

= exp[-(y+ (v -~)e-6'f?-ri)}a~,]exp[-jp(s)[l-;{y+(v - y ) e - 6 ( r z - s ) ; s } ] d s ]  (2.10) 

Proof - 
(2.9) follows immediately where we set v =  v,, k = -+( Vl v, --)ewa2 Vl in theorem 2.2. (2.10) 

6 6 
follows from (2.9) and (2.3). 

0 

Proof 
If we set v, = 0 in (2.9) then (2.1 1) follows. If' we also set V, = 0, V =  0 in (2.9) and (2.10) 
then (2.12) and (2.13) follow. 

U 

We can obtain the asymptotic (stationary) distributions of A, at time t from (2.1 l), provided 
that the process started sufficiently far in the past. In this context we interpret it as the limit 
when t + --oo. In other words, if we know /z at '--oo' and no information between '--oo' to 
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present time t, '--oo' asymptotic distribution of A, can be used as the distribution of A,. It is 
easy to check that if 6( t )  = 6, lim At) = p and lim p ,  ( t )  = p ,  then 

+-- I + - -  

r 
jp (s ) [ l -  ~{ve-'('-'); s)]ds < -oo (2.14) 

- 
1 -  g(u ; t )  where p, ( t )  = ydG( y ;  t )  = E( y ;  t )  and G( u; t )  = 

U 0 

Lemma 2.5 Let A, be as defined. Also let 6(t) = 6 and assume that lim A t )  = p  and 

lim p l  ( t )  = p,, Then the '-m' asymptotic distribution of 2, has Laplace transform 
r+-- 

r+-- 
fl 

E(e-"41 ) = exp[- jp(s)[ l -  g{~e-""~-"';s}]ds] 
-_ 

Proof 
Without loss of generality, if we change the time scale in (2.1 1), 

.E[e-vz41 14, }= exp(-vAroee-J(rl-'o)}exp[-j p(s)[l - ĝ{ ve-6(rl-s) ; s)]ds] . 
10 

Let to + --oo in (2.16) then the result follows immediately. 

(2.15) 

(2.16) 

0 

Theorem 2.6 Let X,, N ,  and Ar be as defined and the jump size distribution be exponential 
i.e. g (y ; t )  = (a+ y")exp(-(a+ y " ) y ) ,  y > 0, y> -aeye-". Assuming that 

a p ( t )  = p T +  then 
a+ "It! 

(2.18) 
and 

(2.19) 
If ,Ir is '--' asymptotic, 

(2.20) 

+ Note: The reason for this particular assumption will become apparent later when we change the probability 
measure. 
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and 

(2.22) 

(2.1 l), (2.12) and (2.13) then (2.17), (2.18) and (2.19) follow. 
Let to + -= in (2.17) then (2.20) follows immediately, from which (2.21) and (2.22) follow. 

0 

Now let us derive the expected value of N,. 

Theorem 2.7 Let N ,  and A, be as dej?ned. Consider constants f ,  @ such that f I0 and 
@ > I .  Then 

rfthe jump size distribution be exponential, i.e. g ( y ; t )  =(a+ Fh)exp{-(a+ p" )y ) ,  y > 0, 

y>  -m-" with p ( t )  = p a  and A, is '-='asymptotic a 
a+ F 
E(Nf ,  - N f l ) = - ( t 2  P 

6a 
(2.24) 

Proof 
Using (2.4), we can obtain 

'I 

~ ( n t ,  laro ) = ArOe-~(fl-~o) + e-'1 Je"p(s )p ,  (s)ds (2.25) 
'0  

and by letting to + -= in (2.25), we can obtain the '-=! asymptotic expected value of At ;  
' I  

E(Afl ) = e-" 1 e 6s p ( W ,  
-_ 

m 

where p,(t) = 5 ydG(y; t )  = E ( y ; t ) .  From (2.2) 
0 

(2.26) 

138 



12 

E[N1,  - NtI 1 = jW3 )ds * (2.27) 
11 

Condition on A,, in (2.27) and use (2.25) then (2.23) follows immediately. 
If the jump size distribution is exponential i.e. g ( y ; t )  = (a+ ",e")exp{-(a+ ",e")y} ,  y >O, 

y> -m-" and p(t) =ps the '--oo! asymptotic expected value of A, becomes a 
a+ ",e 

(2.28) 

a Therefore set p( s) = p~ , p l  (s) = ~ in (2.23) and use (2.28), then (2.24) follows 

immediately. 
a+ 7e a+ p& 

c3 

3. THE ESSCHER TRANSFORM AND CHANGE OF PROBABILITY MEASURE 

The assumption of no arbitrage opportunities in the market is equivalent to the existence of an 
equivalent martingale probability measure. We will examine an equivalent martingale 
probability measure obtained via the Esscher transform (see Gerber & Shiu, 1996). In 
general, the Esscher transform is defined as a change of probability measure for certain 
stochastic processes. An Esscher transform of such a process induces an equivalent 
probability measure on the process. The parameters involved for an Esscher transform are 
determined so that the price of a random payment in the future is a martingale under the new 
probability measure. A random payment therefore is calculated as the expectation of that at 
maturity with respect to the equivalent martingale probability measure (also known as the 
risk-neutral Esscher measure). 
We here offer the definition of the Esscher transform that is adopted from Gerber & Shiu 
(1996). 

Definition 3.1 Let X ,  be a stochastic process and h* a real number. For a measurable 
function J the expectation of the random variable f ( X ,  ) with respect to the equivalent 
martingale probability measure is 

(3.1) 

h*X, 

where the process F) is a martingale. 

From definition 3.1, we need to obtain a martingale that can be used to define a change of 

probability measure, i.e. it can be used to define the Radon-Nikodym derivative where 
dP 

P is the original probability measure and P* is the equivalent martingale probability measure 
with parameters involved. This martingale will be used to calculate the premiums for stop- 
loss reinsurance contract. Furthermore, using this equivalent martingale probability measure, 
the pricing models for stop-loss reinsurance contract will be established and illustrated 
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through numerical examples. In general, more than one equivalent martingale probability 
measure exists but it is not the purpose of this paper to decide which is the appropriate one to 
use. 
Let M, be the total number of catastrophe jumps up to time t. We will assume that claim 
points and catastrophe jumps do not occur at the same time. 
The generator of the process (Xf,NI,C,,AI, M,,t) acting on a function f(x,n,c,A,m,t) 
belonging to its domain is given by 

d s $ "  A f ( x , n , c ,  A,m, t )  = - + a- + a[Jf(x,n + 1,c + u,A,m,t)dH(u) - f ( x , n , c ,  A, m,t)] 
& a 0  

-s.Zz+ d s "  p l j f (x ,n ,c ,A+ y ,m+l ,WG(y)  -f(x,n,c,A,m,t)l. 
0 

(3.2) 
Clearly, for f (x ,n ,c ,A,m,t)  to belong to the domain of the generator A, it is essential that 
f(x,n,c,A,m,t) is differentiable w.r.t. n, c ,  A ,  t for all x ,  n ,  c ,  A ,  m, t and that 

Lemma 3.2 Let A, as defined. Assume that f ( n , A , t )  = f (A,t) for all n and that e'Ar is a 
martingale. Consider a constant v' such that v' 2 0. Then 

- Proof 
The generator of the process (AI  , t )  acting on a function f ( A , t )  with respect to the equivalent 
martingale probability measure is 

(3.4) 
,t)(a,, = a1 - m , o )  A* f(a,o) = 

t 
v'4 

E ( e  v''r ) 
We will use - as the Radon-Nikodym derivative to define equivalent martingale 

probability measure. Hence, the expected value of f ( A , , t >  given 
equivalent martingale probability measure is 

with respect to the 

Since the denominator in (3.5) is a martingale, it becomes 
f 

f(A,O).e-v'A + I E [ A  f(As,s).e-v'As(A,, = AJds 
0 . (3.6) E*{ f (a f , t )po  =a}= e - ~ ' A  

Set (3.6) in (3.4) then 

(3.7) 

Therefore, from Dynkin's formula (see Oksendal (1992)) (3.3) follows immediately. 
3 
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Theorem 3.3 Let N,, C,, A, and M ,  be as defined. Consider constants 8, v*, y* and f, 
such that $ 2 1, v' I 0, I/* 2 1 and . f  I 0. Then 

8"'e-"'C1 exp[-{8* i(v*) - l} jAsds]y*Mf exp(-y*A,e")exp[pj{l- y' ;(y*e")}ds] (3.8) 
0 0 

is a martingale. 

- proof 
From (3 .2) ,  f (x ,n ,c ,A ,m, t )  has to satisfy A f  = O  for f (X , ,Nr ,C, , /2 , ,M, , t )  to be a 
martingale. Trying 8"e-"*'eCX y*" exp(- f h " ) e A ( ' )  we get the equation 

and solving (3.9) we get 
A ' ( t )  +A$ +A{$  ;( v ' ) -  1) +p{ I,V* ;( f e " )  - 1 )  = 0 (3.9) 

f 

#* =-{e*i(v*)-l} and A ( t ) = p j ( l - y *  ;(y'e")}ds 
0 

and the result follows. 
U 

Now, let us examine the generator A* of the process (X, ,N, ,C, ,A, ,M, , t )  acting on a 
function f (n,n,c, A,m,t) with respect to the equivalent martingale probability measure . 

Proof 
From theorem 3.3, we can use 

8* N' e-""' exp[-( 8* i (v* ) - 1,) Axds]y*Mf exp(- y* A, e " ) exp[ pi (1 - y* ; (y'ess ) Jds] 
n n 

E[B*N'e-"'Cr exp[-{B* i (v*)  - l } jAsds]y*M~ exp(-y*jl,e")exp[pj(l- y* ~ ( y * e " ) ) d s ] ]  

as the Radon-Nikodym derivative to define an equivalent martingale probability measure. 

0 0 

(3.11) 
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Theorem 3.4 yields the following: 

(i) The claim intensity function A, has changed to A,$ h( v ' )  ; 
(ii) The rate of jump arrival p has changed to p* ( t )  = pf ;( f e " )  

(iii) The jump size measure dG( y )  has changed to dG*( y ;  t )  = 

h 

(it now depends on time); 
exP(- f e " y ) d G ( y )  

g ( f e " )  
(it now depends on time); 

e-vxdH(u) 
(iv) The claim size measure dH(u)  has changed to dH*(u)  = 

i( V*) 
Let us evaluate the '-=' asymptotic expected value of N ,  and the Laplace transform of the 
'-m. asymptotic distribution of N ,  with respect to the equivalent martingale probability 
measure, i.e. E * ( N , )  and E' (8" ) .  We will assume that the jump size distribution is 
exponential ( g ( y )  = y > 0, a> 0) and that A, is !--' asymptotic. Therefore we can 
obtain that g * ( y ; t ) = ( a + f e " ) e x p { - ( a + f e " ) y ] ,  y > O ,  --a/'< f S 0  and 

l a :  
appropriate in the short term only, as it breaks down for t 2--ln(-Y). For simplicity, let us 

assume that V* = 0 and y* = 1. 
S Y  
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Corollary 3.5 Let N ,  be 
constants 8, 8, v', ye 
Furthermore if,%, is '--' 

as defined and the jump size distribution be exponential. Consider 
and f such that 0 5 8 1 1 ,  8 2 1 ,  v ' = O ,  I,v'=~ and f S 0 .  

asymptotic then 

(3.13) 
and 

(3.14) 

where 0 < t ,  < t, < t 

- Proof 

From theorem 3.4 and (2.3) E*(8N12-N'i  ) = E[exp{-B' i (v*) ( l -8{ /Asds}]  where 
f l  

dH*(u) = e-""dH( a) , p * ( t ) = p V * i ( f e " )  and d G * ( y ; t ) =  exp(- fe"y)dG(y) .  Since 

i( V')  s ( f e " >  
a v* = 0 ,  y* = 1 and the jump size distribution is exponential, p"(s) = p  and 

P ; W  = ~+ r'e" . Therefore if we set v =  $(1-8) in (2.21) and multiply 8 to (2.24), 

putting y =  f , the results follow immediately. 
0 

a+ f e "  

4. PRICING OF A STOP-LOSS REINSURANCE CONTRACT FOR 
CATASTROPHIC EVENTS 

Let us look at the stop-loss reinsurance premium at time 0 assuming that there is an absence 
of arbitrage opportunities in the market. This can be achieved by using an equivalent 
martingale probability measure, P * ,  within the pricing model used for calculating premium 
for reinsurance contract. Therefore, from (1.3), the stop-loss reinsurance premium at time 0 
is 

where all symbols have previously been defined. 
E I C ,  -b)+I (4- 1) 

Tu'D-le-fi 
(9--1)! 

We assume that the claim size distribution is gamma, i.e. h(u) = 9 u > o ,  

p>O, 9 2 1 .  Then 

where a,' = P'( N ,  = n )  
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Let us illustrate the calculation of stop-loss reinsurance premiums for catastrophic events 
using the pricing models derived previously. The change of stop-loss reinsurance premiums 
associated with changes in value of @ and f is also examined. 
Let us also assume that the jump size distribution is exponential i.e. 

l a  g * ( y ; t ) = ( a + f e " ) e x p { - ( a + f e " ) y } ,  y > O ,  - a ~ - " < f l O  and t<-ln(-,) and that 

2, is '-m' asymptotic. Consider constants tf and 8 such that 0' 2 1 and 0 S 81 1. 
From (3.13), the p.g.f. of N ,  is 

6 Y  

m - 
E*( e " l )  = c B .  P * ( N ,  = n )  = @'a: 

n=O n=O 

y* +m-" 

The parameter values used to expand (4.3) with respect to B are 
8 = 1 . 1 ,  f=-0.1,  a = l ,  6=0.3,  p = 4 ,  t = l .  

Using these parameter values we can calculate the mean of the claim number in a unit period 
of time. From (3.14) 

E*(N,) =---?--In '" '*' [ ';:)- 16.61. 
6a S2a 

By expanding (4.3) using the MAPLE algebraic manipulations package we can obtain 
a: = P* ( N ,  = n )  which is as follows: 

= 0.000014982 + 0.000116288 + 0.0004826682 + 0.001422583 + 0.0033355$ + 
0.006615@ + 0.01152385 + 0.0180868' + 0.026045g + 0.034881@ + 0.04390" + 
0.052349e"' + 0.0595378'2 + 0.064932g3 + 0.0682148'4 + 0.069298" + 0.068273Q6 + 
0.0654348" + 0.0611488'8 + 0.055831Q9 + 0.04989882° + 0.04372382' + 0.03761682* + 
0.031815823 + 0.026484p + 0.02172p + 0.017567g6 + 0.014023827 + 0.011056828 + 
0.0086166829 + 0.006641983° + 0.005066783' + 0.0038272832 + 0.0028639Q3 + 
0.0021241834 + 0.001562183' + 0.0011396836 + 0.0008249783' + 0.0005928283* + 
0.00042301 g9 + 0.00029981 8"o + 0.00021 112$' + 0.00014775$2 + 0.00010279813 + 
0.000071 101 f#" + 0.00004891 1 $' + 0.000033469816 + 0.000022785$' + 0.000015436$8 + 
0.000010407 g9 + 0.000006985 86' + 0.0000046672@' + 0.0oooO31051 6p2 + 
0.0000020573 Q3 + 0.0000013575@4 + O( @'). 

(4.4) 

Example 4.1 
The parameter values used to calculate (4.2) are 

n :  1 - 41, q = l ,  p=1, b=0, 5, 10, 16.61, 20, 25, 30 
E * ( C , )  = E * ( N , ) E ( K )  = 16.61. 
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By computing (4.2) using S-Plus the calculation of the stop-loss reinsurance premiums for 
catastrophic events at each retention level b are shown in Table 4.1. 

0 
5 

10 
16.61 

Table 4.1 
I Retention level b I Reinsurance premiums I 

16.58403 
11.61916 
7.06779 
2.833487 

20 
25 
30 

1.587005 
0.595824 
0.1951 147 

Exanmle 4.2 
We will now examine the effect on stop-loss reinsurance premiums caused by changes in the 
value of tf and f . By expanding (4.3) using MAPLE at each value of tf and f respectively 
and computing (4.2) by S-Plus, the calculation of the stop-loss reinsurance premiums for 
catastrophic events at the retention limit b = 25 are shown in Table 4.2 and Table 4.3. 

tf 
1 .o 

f = - O . l  
0.3544252 

1.1 
1.2 
1.3 
1.4 

0.595824 
0.9299355 
1.366049 
1.90885 

Table 4.3 

0.3029752 
-0.1 0.595824 

1.207256 
2.5 12553 
5.364622 

11.65184 
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