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Integration Characteristics
Building on existing hybrid classifi ers still poses important challenges, 
mostly related to the selection, interoperability and scalability of different 
classifi ers. As the classifi ers themselves are approaching their limits, the 
next natural challenge is to establish frameworks that integrate multiple 
classifi ers into a single unifi ed approach (Figure 1). There are several char-
acteristics that such frameworks should exhibit:

 Multi-method support. Frameworks should be open enough to sup-
port classifi ers from various AI methods, for example different neural 
networks (e.g. self-organizing maps, backpropagation and support 
vector machines), decision trees, and genetic algorithms among oth-
ers.

 Complexity on-demand. Simple classifi cation tasks may not require 
complex algorithms or multi-dimensional inputs. A successful frame-
work should be able to match algorithms to problem complexity. By 
doing so, such systems typically exhibit better generalization in results 
because they do not suffer from overfi tting. 

 Transparency. The ability to backtrack errors to the original source (i.e. 
classifi er) is critical to assess each classifi er’s performance. Framework 
architecture should be simple enough to allow identifi cation of prob-
lematic classifi ers. 

 Classifi er independency. Within the framework, each classifi er should 
work independently of another. This is important to move towards 
“plug-in” classifi ers where one may be replaced without causing a 
ripple effect requiring replacement of others.

 Scalability. Framework architecture should allow adjustments as 
problem requirements change, and/or additional groundtruth data 
become available.

Introduction
Remote sensing as a field of study has 
reached its adulthood; computer-assisted 
classifi ers have been in development for 
more than two decades. The complexity of 
remote sensing classifi cation has led to a 
variety of methods, some of them based on 
artifi cial intelligence (AI), and provides mo-
tivation for this special issue. AI techniques 
range from simple out-of-the-box imple-
mentations to algorithms tailored to the 
specifi cs of remote sensing classifi cation. 
 Recently, we have also observed a signifi -
cant increase in parallel processing capabili-
ties. Computer workstations with multiple 
processors are becoming the mainstream 
in research laboratories. Physical limitations 
in processor design indicate that future 
computational power improvements will 
result from parallel processing rather than 
single processor advances. Parallel com-
puting presents a unique opportunity and 
challenge for image classifi ers. The question 
arises: how can we harvest this new power 
to improve classifi cation results?
 One solution is to implement hybrid clas-
sifi ers, i.e. methods that merge multiple 
approaches together. In the fi eld of machine 
learning several works have shown the 
potential of a hybrid approach (Hansen and 
Salamon, 1990; Perrone, 1992; Wolpert, 
1992). In the simplest implementation of 
the hybrid concept predictions of different 
classifiers are averaged together (Krogh 
and Vedelsby, 1995; Breiman, 1996;). 
More advanced methods implement rules 
to optimally merge multiple methods 
(Steele, 2000). Recently, Coe et al. (2005) 
developed a hybrid model combining an 
object-oriented and a pixel-based approach. 
Also, Liu et al. (2004) presented a hybrid 
classifi cation approach using decision trees 
and ARTMAP neural networks followed by a 
winner-takes-all methodology using a fuzzy 
merging of multiple classifi er outputs.
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Figure 1. Establishing an integration framework supporting multiple classifi ers.
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 Looking beyond issues related to framework ar-
chitecture, a challenging task remains: establishing 
a methodology for optimal selection among several 
competing classifi ers, while preserving the desired 
characteristics mentioned above. Work being per-
formed in our Intelligent Geocomputing Lab at the 
State University of New York College of Environmental 
Science and Forestry has begun to show the necessity 
and advantages of such a task. We have successfully 
established an expert-based system that segments 
a binary multispectral classifi cation (e.g. urban vs. 
non-urban areas) into context-specifi c sub-problems 
(e.g. urban areas of high brightness vs. soil of high 
brightness). In a classifi cation of a Landsat scene 
(Figure 2) algorithmic complexity adjusts to problem 
specifi cs (Figure 3). We have also automated a pro-
cess using eight different neural networks for urban 
sprawl modeling. Both works are currently under 
review (for updates and paper availability please 
visit www.aboutgis.com). The two aforementioned 
efforts are small steps towards unifi ed frameworks, 
with substantial work still remaining. 

Integration Benefi ts
The underlying objective behind integration is not to 
present yet another single-thread classifi er; instead 
we strive to establish a framework for collaborative 
algorithms. The appropriate merging of multiple 
algorithms offers the following advantages:

Support for algorithmic evaluation by non-experts. 
Remote sensing products often act as an additional 
input layer for numerous environmental studies 
(e.g. hydrology, biology, urban planning). It is 
often the case that non-experts have high expecta-
tions from remote sensing products without real-
izing potential sensor, acquisition and classifi cation 
limitations. Therefore, there is a clear need to incor-
porate advanced accuracy metrics associated with 
remote sensing products that express usefulness 
and limitations of incorporated methodologies. 
Various works already have realized the benefi ts 
of spatially-explicit accuracy metrics (Foody et al., 
1992; Canters, 1997; Steele et al., 1998; Carpen-
ter et al., 1999; Pontius, 2000; Alimohammadi 
et al., 2004; Liu et al., 2004; Aires et al., 2004). 
Integrated frameworks naturally support variable 

Figure 2. Landsat scene from Las Vegas, NV (April, 2000 - natural color).

Figure 3. Spatial footprint of each selected algorithm within the framework.
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accuracy metrics, each associated with a specifi c algorithm within 
the framework. For example, in Figure 3 there is an accuracy metric 
linked to each of the eight algorithms. 

Error correction capabilities. Assuming a successful integration 
framework where each implemented algorithm is independent of 
another (i.e. independent plug-ins), future algorithmic revisions 
should target algorithms with lower accuracy. Ancillary datasets 
may be acquired in targeted areas (e.g. high-resolution imagery, 
lidar or census data) and as new scientifi c methods arise incremen-
tal algorithmic improvements can be achieved without sacrifi cing 
existing accurate works. For example, as shown in Figure 3, the 
decision tree (in yellow) is ~82% accurate while the whole scene is 
~92% accurate, making the decision tree a prime candidate for re-
vision. We should emphasize that this is due to both the relatively 
low accuracy and the large spatial footprint.

Support for scientifi c collaboration.  Frameworks may separate a clas-
sifi cation task in multiple sub-tasks as discussed earlier. There are 
no restrictions forcing each sub-task to be tackled by the same 
algorithm or scientist. Collaborative environments can be cre-
ated where scientist specialization is at the foreground leading 
to shared instead of competitive efforts. For example, a scientist 
in one university could establish vegetation extraction algorithms 
while another focuses on urban build up identifi cation, with their 
individual efforts later joined together.

Computational speed.  By design, integration frameworks shine in 
large-scale applications, because the benefi ts (as mentioned above) 
outperform the initial cost of establishing the framework. In such 
environments training, error-correction and simulation speeds are 
important - think of a yearly update of the National Land Cover Da-
taset. The ability to train and simulate algorithms in a parallel fash-
ion will utilize the latest hardware developments and in the future 
will allow us to analyze much higher data volumes – the majority 
of which is already waiting to be converted into useful products.

Summary
As algorithmic improvements in remote sensing classifi ers reach 
their limits, the next natural frontier is the integration of multiple 
approaches into a unifi ed framework. In this highlight article, char-
acteristics for integrated frameworks are discussed, along with a 
demonstration of a classifi cation process and associated benefi ts. 
Considering that image availability is expected to rapidly increase with 
the recent announcement from the USGS to allow free access to the 
Landsat archive, integrated approaches offer a unique opportunity 
for collaborative systems and science within our fi eld.
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