
Dominated Coupling From The Past and
Some Extensions of the Area-Interaction

Process

By

Graeme K. Ambler

 ��

A dissertation submitted to the University of Bristol in
accordance with the requirements of the degree

of Doctor of Philosophy in the Faculty of Science

September 2002

Department of Mathematics

Abstract

Dominated coupling from the past, an example of perfect simulation, is a method

for sampling from the equilibrium distribution of a Markov chain. A particular

model which may be sampled in this way is the area-interaction point process of

Baddeley and van Lieshout (1995). This thesis reviews perfect simulation and

some aspects of point process theory. It also reviews some methods for simulating

spatial point processes. It then introduces an extension of the area-interaction

process which incorporates both attractive and repulsive components at different

scales. The properties of this model are investigated using some standard test

functions, and the model is fitted to a standard data set. Some discrete analogues

of these models are then discussed along with methods of sampling from these

models using dominated coupling from the past. While discussing these sampling

methods, we highlight some of the pitfalls that exist when one attempts to use

dominated coupling from the past. We set out and investigate the use of the

discrete analogue of the area-interaction process as a prior distribution on wavelet

coefficients in Bayesian non-parametric regression. Finally, we discuss some of

the issues that arose while implementing the algorithms, both for simulating from

the attractive-repulsive model and for the posterior distribution of the Bayesian

wavelet thresholding model.

3

Acknowledgements

I would like to thank my supervisor, Professor B.W. Silverman, for his guidance

and encouragement throughout my Ph.D. I am also grateful to many of the other

members of the Statistics group for their advice and support, in particular Dr.

Stephen P. Brooks, who encouraged me to start a Ph.D.; Professor Peter J. Green,

who suggested that I might study perfect simulation; and Dr E.J. Collins, who

was very supportive when I needed to take some time out due to ill health.

I would also like to thank my parents and my friends for their love and encour-

agement. Finally I must thank my wife Rachel. Without her constant love and

support I could never have finished this.

The research was carried out with the financial support of an EPSRC studentship.

5

Declaration

I, the author, declare that the work in this dissertation was carried

out in accordance with the Regulations of the University of Bristol.

The work is original except where indicated by special reference in

the text and no part of the dissertation has been submitted for any

other degree.

The views expressed in the dissertation are those of the author and

in no way represent those of the University of Bristol.

The dissertation has not been presented to any other University

for examination either in the United Kingdom or overseas.

Graeme K. Ambler

7

Contents

Abstract 3

Acknowledgements 5

Declaration 7

1 Introduction 17

2 Preliminaries 20

2.1 Topology . 20

2.2 Measure theory . 23

2.3 Spatial point process theory . 25

2.3.1 Summary . 27

2.4 Examples . 28

3 Perfect Simulation 31

3.1 Introduction . 31

3.2 Coupling From The Past . 32

3.2.1 Coupling . 33

3.2.2 A Simple Example . 34

3.3 CFTP For Continuous State Spaces 37

3.3.1 The Multigamma Coupler 37

3.3.2 Rejection Coupling . 40

3.3.3 The Bisection Coupler . 41

3.3.4 Further results using CFTP on continuous state spaces . . . 43

3.4 Perfect Simulation For Spatial Processes 43

3.5 Fill’s Algorithm . 45

9

3.5.1 Proof of the validity of Fill’s algorithm 46

3.5.2 Applications and extensions of Fill’s algorithm 47

3.6 Other Perfect simulation algorithms 48

3.7 Conclusions . 48

4 Spatial Point Processes 50

4.1 Spatial Point Processes . 50

4.1.1 The Poisson Process . 51

4.1.2 The Area-Interaction Point Process 52

4.1.3 Simulation of the Poisson Processes 55

4.1.4 Perfect Simulation of the Area-Interaction Process 58

4.2 Descriptive statistics . 62

4.2.1 Nearest neighbour measures 62

4.2.1.1 Minimum inter-event distances 62

4.2.1.2 The empty space distribution F 63

4.2.1.3 The nearest neighbour distribution G 63

4.2.1.4 The J function . 64

4.2.2 The K function . 65

4.2.3 The T function . 66

4.3 Parameter estimation techniques . 67

4.3.1 Maximum likelihood . 68

4.3.2 Maximum Pseudo-likelihood 68

4.3.3 Takacs-Fiksel estimation . 69

4.4 An extension of the area-interaction process 70

4.4.1 Simulation . 72

4.4.2 Descriptive Statistics . 75

4.4.3 Estimation of parameters . 83

4.5 Redwood seedlings . 88

4.6 Conclusions . 90

5 Lattice Processes 91

5.1 Area-interaction processes on discrete space 91

5.1.1 An attempt at perfect simulation 93

5.1.2 Example: A two point model 98

5.2 A Poisson process on a finite discrete space 100

5.3 The attractive-repulsive process on discrete space 102

5.3.1 Simulation . 103

5.4 Perfect simulation of a discrete AIP revisited 105

5.4.1 Example revisited: The two point model 108

5.4.2 What goes wrong . 110

5.4.3 Example revisited again . 110

5.5 A correct algorithm . 111

5.6 Conclusions . 112

6 An application to wavelet thresholding 113

6.1 Introduction . 113

6.2 An Extension of Bayesian Wavelet Thresholding 117

6.3 Sampling from the posterior . 122

6.4 Using the Generated Samples . 124

6.5 Examples . 125

6.5.1 Jumpsine . 125

6.5.2 Heavisine . 128

6.6 Simulation Study . 131

6.7 Future Work . 134

7 Implementational issues 135

7.1 Bayesian Wavelet Thresholding . 136

7.1.1 Random Number Generators 136

7.1.2 Seeds for different draws . 137

7.1.3 Seeds for each location . 138

7.1.4 Birth and death times and marks 139

7.1.5 Dealing with large and small rates 140

7.2 The Attractive-Repulsive Process 141

7.2.1 Random Number Generators 141

7.2.2 Threaded Binary Trees . 142

7.2.3 Calculating overlap . 145

A Implementational details 147

A.1 Bayesian Wavelet Thresholding . 147

A.1.1 Automating several runs of the program 147

A.1.2 A systematic deconstruction of the implementation 149

A.2 The Attractive-Repulsive Process 155

A.2.1 Automating several runs of the program 155

A.2.2 A systematic deconstruction of the implementation 158

Bibliography 162

List of Tables

4.1 Minimum inter-event distances for the three different processes . . . 86

5.1 Possible states of our example process 99

6.1 Comparison of our estimator with other wavelet-based estimators . 133

7.1 Values of the parameters of the three linear congruential generators

used during the implementation of the attractive-repulsive process. 142

13

List of Figures

3.1 An example of CFTP. 35

3.2 An example of rejection coupling. 41

3.3 An illustration of the bisection coupler. 42

4.1 An example of some events together with circular “grains” G. . . . 54

4.2 Another look at Figure 4.1. 60

4.3 Probability Plot of the F̂ function for a Poisson process 76

4.4 Probability Plot of the Ĝ function for a Poisson process 77

4.5 Probability Plot of the F̂ function for an attractive-repulsive process 77

4.6 Probability Plot of the Ĝ function for an attractive-repulsive process 78

4.7 Probability Plot of the F̂ function for a second attractive-repulsive

process . 78

4.8 Probability Plot of the Ĝ function for a second attractive-repulsive

process . 79

4.9 A comparison of the transformed F̂ function for three different pro-

cesses . 80

4.10 A comparison of the transformed Ĝ function for three different pro-

cesses . 81

4.11 A comparison of the Ĵ function for three different processes 82

4.12 A comparison of the L̂ function for three different processes 84

4.13 A comparison of the T̂ function for three different processes 85

4.14 Redwood seedlings data . 88

4.15 L and T function plots of the redwood seedlings data 89

14

6.1 Examples of the DWT of some test functions. 119

6.2 Examples of Z(·). 121

6.3 The jumpsine dataset. 126

6.4 The discrete wavelet transform of the jumpsine dataset. 127

6.5 The heavisine dataset. 129

6.6 The discrete wavelet transform of the heavisine dataset. 130

6.7 The processed heavisine dataset with two different values of γ. . . . 132

7.1 A doubly-threaded binary tree. 143

Chapter 1

Introduction

In 1974, G. S. Watson wrote “Modern statistics might well be defined as the

application of computers and mathematics to data analysis”1. This is certainly

no less true today than it was then. This thesis is concerned with two areas

of statistics which have become practical only with the rapid increase in both

computer power and availability that we have seen in the last 40 years. The first

is spatial modelling, where we are now able to fit models which are sufficiently

complex that we may expect to be able to explain many kinds of data with a

reasonable level of detail. The second is stochastic simulation, which has become

increasingly important with the rise of Markov Chain Monte Carlo methods.

Spatial point processes and their discrete cousin Lattice processes are common

in everyday life. Examples of the former are the locations of trees in a forest or

stars in the sky. Examples of the latter on a regular lattice include the pixels on

a computer screen or in a digital photograph, though many examples on irregular

lattices also exist, such as disease counts in the counties of England.

Once we have a proposed model for such data, the next step is to fit that model.

One key method for assessing the goodness of fit of a model is the Monte Carlo

test. This involves simulating data from the model several times and calculating

values of some test statistics for those simulations and for the data. The values

obtained from the data are then compared with the values obtained from the

1 Forward to Matheron (1975).

17

Chapter 1. Introduction

simulations. Clearly for this method to be successful we must have reliable methods

for simulating samples from the model. This is why there is an emphasis on

simulation whenever we develop models.

Another area of statistics where it is desirable to have reliable methods of

stochastic simulation is in Bayesian modelling. Here we basically express our be-

liefs about the structure of the data by specifying a prior distribution on the values

of the model parameters and then obtain a posterior distribution by means of Bayes

theorem, which expresses the distribution of the parameters given the data. We

then simulate from this distribution and use suitable summary statistics, in some

ways analogous to the test functions mentioned above, to make inferences about

the model parameters.

Unfortunately it is not always simple, or even possible, to derive the exact

posterior distribution of many Bayesian models. In many cases the best that we

can do is to define it up to a multiplicative constant. Many spatial point process

models are also only defined up to a multiplicative constant.

In both of the situations mentioned above it is common to use either discrete

time Markov chains or continuous time Markov processes whose stationary dis-

tribution is the distribution we wish to sample from. This is possible because

the multiplicative constant cancels out when defining the transition kernel of the

Markov chain. The method of simulating a Markov chain whose stationary distri-

bution is the distribution we want to sample from is known in general as Markov

chain Monte Carlo. The traditional way to proceed is to run the Markov chain (or

Markov process) for a ‘long time’ (called the burn-in time) in the hope that by the

end of this period the Markov chain (or Markov process) will be sufficiently close

to stationarity that we may assume that we are now sampling from the required

distribution. Unfortunately, the question ‘how long is long enough?’ is in general

very difficult to answer.

One partial solution, coupling from the past, was developed by Propp and Wilson

(1996). Coupling from the past is a method for sampling from the equilibrium

18

distribution of a Markov chain through coupling multiple Markov chains with

the same equilibrium distribution but different initial states. Other methods of

sampling from the equilibrium distribution of a Markov chain have since been

developed, and the general class of such algorithms is now commonly referred to

as ‘perfect simulation’, a name first coined by Kendall (1998). Coupling from the

past and some other methods of perfect simulation are introduced in Chapter 3.

We then move on to spatial point processes in Chapter 4, paying particular at-

tention to the area-interaction process, which we also extend to enable us to model

point patterns incorporating both clustering and repulsion at different scales. Due

to this feature, we have chosen to call the new model an “attractive-repulsive

model”. Each time a model is discussed, it is accompanied by a section explain-

ing how we would go about simulating draws from this model. In the cases of

the area-interaction process and our attractive-repulsive model this method re-

lies on an extension of the perfect simulation techniques developed in Chapter 3

called dominated coupling from the past. Various descriptive functions are also

introduced, and are used to investigate the properties of our attractive-repulsive

process. We also apply our attractive-repulsive process to a standard data set and

show that it fits well.

In Chapter 5 we develop discrete analogues of the spatial point processes dis-

cussed in Chapter 4. Again we focus on methods of simulating these models, and

along the way discuss various pitfalls that exist when one attempts to use perfect

simulation. In Chapter 6 we present a Bayesian wavelet thresholding scheme which

uses one of the models developed in Chapter 5 as a prior for the distribution of

significant wavelet coefficients. We also present a method for perfectly simulating

the posterior distribution of this model, and give some examples of the method’s

performance.

Finally, in Chapter 7 we discuss some of the issues which arose when implement-

ing the algorithms introduced in Chapters 4 and 6.

19

Chapter 2

Preliminaries

Due to the rather abstract nature of spatial point process theory, it is necessary

to begin by introducing some appropriate preliminary mathematical theory. We

begin with a brief discussion of topology in Section 2.1, before going on to discuss

some basic principles of measure theory as they apply to spatial point processes in

Section 2.2. With these in place, we then present a small amount of spatial point

process theory in Section 2.3. For the sake of those who are not interested in the

precise formulation and wish to treat the subject intuitively, we present in Section

2.3.1 a brief heuristic summary of the concepts dealt with formally in Section 2.3.

For a more complete treatment of the topics covered below see Sutherland (1975)

for general topology and the introductory chapters of Matheron (1975) for the

topology not covered in Sutherland1. Kingman and Taylor (1966) is an excellent

text on measure theory although Williams (1991) gives a more intuitive treatment.

The material on upper and lower semicontinuous functions comes from Jost (1998).

For the material on spatial point process theory see Stoyan et al. (1995), though

the material on Markov point processes is only covered briefly.

2.1 Topology

A topological space T = {A,G} consists of a non-empty set A together with a fixed

collection G of subsets of A satisfying

1 Matheron is not an introductory text and should not be read unless the reader
is familiar with all of the topics covered in Sutherland!

20

2.1. Topology

• A, φ ∈ G,

• If G1, . . . , Gn ∈ G is a finite collection of elements of G, then

n⋂
i=1

Gi ∈ G,

• The union of any collection of sets in G is in G.

The collection G of subsets of A is called a topology for A and the members of G are

called the open sets of T . If H is a collection of subsets of A then H augmented

by those sets which follow from H together with the three rules above is called the

topology generated by H. Readers familiar with metric space theory should note

that if there exists a metric ρ on A which determines the class G as it’s open sets

then T is said to be metrisable.

If M is a subset of some topological space T = {A,G} then the pair {M,GM} is

a subspace of T , where the induced topology GM on M consists of all sets M ∩ G

with G ∈ G.

A subset F of a topological space T = {A,G} is said to be closed in T if A− F

is open. A− F is sometimes written F c.

If T = {A,G} is a topological space, x ∈ A a point and H a subset of A then x

is a limit point of H if every open set in T containing x also contains some point

of H other than x. The closure of H, H̄, is the union of H and all the limit points

of H in T . We say that H is dense in T if H̄ = A.

A topological space T = {A,G} is separable if there exists a countable set H ⊂ A

which is dense in T .

A cover for a set H is a collection of sets C such that

⋃
C∈C

C ⊃ H.

C1 is a subcovering of C if C1 ⊂ C and C1 is also a cover for H. A cover is finite

if there are a finite number of elements in it. If H is a subspace of a topological

21

Chapter 2. Preliminaries

space T = {A,G} then a cover C of H is open if C ⊂ G (i.e. C is an open cover in

T if every set C ∈ C is open).

A topological space T is compact if every open cover for T has a finite subcover.

A subset K of T is compact in T if K considered as a subspace of T is compact.

T is locally compact if for every x in T there exists an open set U such that x ∈ U

and Ū is compact.

A topological space T is Hausdorff if given any two distinct points x and y in

T there exist distinct open subsets U and V of T containing x and y respectively.

From here on it is assumed that any topological spaces discussed are locally

compact, Hausdorff and separable.

If T1 = {A1,T1} and T2 = {A2,T2} are topological spaces and f : A1 → A2 is a

function then f is continuous with respect to T1 and T2 if

G ∈ T2 =⇒ f−1(G) ∈ T1.

In other words f is continuous if the inverse image of an open set is open.

Let F, G and K respectively be the closed, open and compact subsets of a given

topological space T. Then the myope topology (or myopic topology) Tk on K is

generated by the classes

KF = {K ∈ K : K ∩ F = φ} and

KG = {K ∈ K : K ∩G 6= φ}

for arbitrary F ∈ F and G ∈ G.

Let T = {A,T} be a topological space and fi : A → Ai be an I-indexed family

of functions where Ti = {Ai,Ti} is a topological space for each i ∈ I. Then the

weak topology on A with respect to {fi : i ∈ I} is the weakest (that is, smallest)

topology T on A such that each fi is continuous with respect to T and Ti. In other

words it is the topology generated by all sets of the form f−1
i (Ui) where Ui ∈ Ti

for any i ∈ I.

22

2.2. Measure theory

2.2 Measure theory

Let F be a set of subsets of a given set A. Then F is a σ-field if

• A ∈ F,

• F is closed under intersections and differences, i.e.

A,B ∈ F =⇒ A ∩B ∈ F and A4B ∈ F

• F is closed under countable unions, i.e.

Ai ∈ F =⇒
∞⋃
i=1

Ai ∈ F.

If F is a σ-field then the pair (A,F) is called a measurable space.

In a topological space T = {A,T} the σ-field B generated by T is the class of

Borel sets.

Let A be a set and C be a collection of subsets of A. Then a function µ : C →

R ∪ {−∞,∞} is said to be σ-additive if

• µ(φ) = 0

• For any disjoint sequence of sets (Ai)i∈N such that Ai ∈ C ∀i ∈ N and⋃∞
i=1Ai ∈ C,

µ

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

The function µ is a measure if

• µ(S) ≥ 0 ∀S ∈ C and

• µ is σ-additive.

If C is a σ-field and µ is a measure then the triple (A,C, µ) is called a measure

space. If µ(A) = 1 then it is a probability space, and µ is called a probability

measure. If µ(A) <∞ then µ is said to be finite (or totally finite).

Let S be a σ-field of subsets of a topological space T which includes both the

open subsets G and the closed subsets F of T . Then a measure µ : S → R+ ∪ {∞}

is regular if for every ε > 0 and E ∈ S then:

23

Chapter 2. Preliminaries

1. ∃G ∈ G s.t. G ⊃ E and µ(G− E) < ε and

2. ∃F ∈ F s.t. F ⊂ E and µ(E − F) < ε.

Let X be a metric space and x ∈ X. A function f : X → R ∪ {∞} is called

lower semicontinuous (l.s.c) at x if ∀ c ∈ R with c < f(x), there exists an open

neighbourhood U of x such that ∀ y ∈ U , c < f(y). A function g : X → R∪{−∞}

is called upper semicontinuous (u.s.c) at x if −g is lower semicontinuous at x. The

function f (g) is called lower (upper) semicontinuous on X if it is lower (upper)

semicontinuous at every x ∈ X. This leads to the straightforward result that f is

lower semicontinuous if and only if ∀ c ∈ R the set f−1((c,∞]) = {x ∈ X : c <

f(x)} is open in X.

A function f : T → R∪{−∞,+∞} is measurable with respect to a given σ-field

F if

f−1(B) ∈ F

for every Borel set B (that is, Borel set in the standard topology over R ∪

{−∞,+∞}).

From the above definition and that of u.s.c. and l.s.c. it is immediately obvious

that if a function is u.s.c. or l.s.c. then it is Borel measurable, since the sets (c,∞]

generate the usual Borel σ-field over R. This fact will be used in Section 4.4.

Suppose that (Ω,F, µ) is a measure space. Then the set function ν : F →

R ∪ {−∞,+∞} is absolutely continuous with respect to µ (write ν � µ) if given

E ∈ F, ν(E) = 0 whenever µ(E) = 0.

Suppose we have µ and ν as above. Then there exists f ∈ L1(Ω,F, µ) such that

ν(E) =

∫
E

fdµ ∀E ∈ F. (2.1)

This is the Radon-Nikodým theorem. The function f is called (a version of) the

Radon-Nikodým derivative, or density of ν relative to µ on (Ω,F). It is unique in

the sense that if f and g both obey (2.1) then f(x) = g(x) except on a set of zero

µ-measure. We write

dµ

dν
= f on F, a.s.

24

2.3. Spatial point process theory

where a.s. stands for almost surely and means “except on a set of zero µ-measure”.

2.3 Spatial point process theory

We consider only Rn (for some arbitrary n) here, though these notions are easily

extended to any separable metric space.

Let B0 be the collection of bounded Borel sets in Rn, and define N = {x ⊂ Rn :

nx(B) <∞ ∀B ∈ B0} where nx(B) is the number of points in x which are in the

set B. Then intuitively N is the set of all B0-finite point configurations in Rn.

Now define the σ-algebra

N = σ
({
{x ∈ N : nx(B) = m} : m ∈ Z+, B ∈ B0

})
,

where σ(·) denotes the σ-algebra generated by sets of the form ·. Then a measur-

able function, X, from some probability space (Ω,F,P) into the measurable space

(N,N) is called a point process.

With this structure in place we now define the nth order moment measure of a

point process to be

M(A1 × A2 × · · · × An) = E(n(A1)n(A2) · · ·n(An)),

for Ai ∈ B0 for i = 1, . . . , n. The first order moment measure,

M(A) = E(n(A)),

is often called the intensity measure.

Let F ∈ N. Then the Campbell measure2 of a point process X is

C(A× F) = E(n(A)I(X ∈ F)),

2 The definition given is sometimes called the first order Campbell measure, where
the nth order Campbell measure of a point process X is defined to be

C(n)(A1 ×A2 × · · · ×An × F) = E(n(A1)n(A2) · · ·n(An)I(X ∈ F)),

where as with the nth order moment measure, Ai ∈ B0 for i = 1, . . . , n. Clearly the nth order
Campbell and moment measures are equal when F = N .

25

Chapter 2. Preliminaries

or equivalently

C(A× F) = E

(∑
ξ∈X

I(ξ ∈ A,X ∈ F)

)
,

where I is the indicator function. The reduced Campbell measure is then defined

to be

C !(A× F) = E

(∑
ξ∈X

I(ξ ∈ A,X \ ξ ∈ F)

)
.

Now assume that π is a σ-finite measure on Rn. For each F ∈ N, C(· ×F) � π,

so letting

Pξ(F) =
dC(· × F)

dπ
(ξ),

we see that

C(A× F) =

∫
A

Pξ(F)dπ(ξ). (2.2)

We can choose Pξ(F) so that it is

1. measurable for all F ∈ N

2. a probability measure on N for all ξ ∈ Rn.

When so chosen, Pξ is called the Palm distribution at the point ξ. The reduced

Palm distribution, P!
ξ, is defined analogously using the reduced Campbell measure.

In particular, (2.2) becomes

C !(A× F) =

∫
A

P!
ξ(F)dπ(ξ).

Finally, we define Markov point processes (Ripley and Kelly 1977).

Let ∼ be a measurable symmetric reflexive relation on Rn. We say that two

points x, y ∈ Rn are neighbours if x ∼ y. We define the border ∂(A) of some set

A ⊂ Rn by

∂(A) = {x : x ∼ y for some y ∈ A},

and abbreviate ∂({x}) by ∂(x).

Now suppose that a point process X has density f with respect to the unit rate

Poisson process. Then X is Markov with respect to ∼ if

26

2.3. Spatial point process theory

1. f(x) > 0 =⇒ f(y) > 0 ∀x, y s.t. y ⊂ x

2. For all x ∈ N , if f(x) > 0 and u 6∈ x then

λ(u;x) =
f(x ∪ {u})

f(x)

depends only on u and x ∩ ∂(u).

The first property is called the hereditary property, and λ(u;x) is called the Pa-

pangelou conditional intensity of x at u. For xi ∈ x, λ(xi;x) is defined as

λ(xi;x) =
f(x)

f(x \ {xi})
.

The Papangelou conditional intensity is used extensively in simulation and es-

timation of parameters, as the normalising constant in the top and bottom lines

cancels, making it possible to manipulate models where the normalising constant

is unknown.

Processes which are Markov with respect to the relation

x ∼ y ⇐⇒ d(x, y) ≤ r

are called Markov of range r.

2.3.1 Summary

Health Warning: The purpose of this section is to give heuristic interpretations

of the material in the previous section. The statements in this section are not

precise and should not be thought of as definitions!

The set N is the set of all point configurations over Rn which have only finite

numbers of points in bounded regions. The set N is a certain collection of subsets

of N . A point process is a mapping which assigns probability to configurations of

points.

Let B be a bounded set. Then under certain regularity conditions on the nature

of B (specifically, B should be a Borel set), the intensity measure, λX , of a spatial

27

Chapter 2. Preliminaries

point process is a function which will tell us the expected number of points in B:

λX(B) = E(n(XB))

where XB are those points in X which are also in B.

The Palm distribution of a point process, Pξ(X), can be thought of as the

conditional distribution of X given that there is a a point at ξ. The Reduced Palm

distribution, P!
ξ(X) can be thought of as the conditional distribution of X \ ξ (i.e.

the remainder of the process) given that there is a point at ξ.

The Papangelou conditional intensity, λ(u, x), of a point process can be thought

of as the conditional probability that there is a point at u given the rest of the

process, where x is the configuration of the process.

A point process X is Markov of range r if its Papangelou conditional intensity,

λ(u, x), is dependent only on the region within r of u and its density is well behaved

in a certain sense.

2.4 Examples

Due to the abstract nature of the previous three sections we now present some

examples to provide the reader with a little intuition about the concepts introduced

above. We begin with topology.

If we begin with the real number line, R, then the sets which we normally think

of as open (i.e. open intervals, collections of open intervals, etc.) form a topology

over R and so R together with those sets forms a topological space. If we then take

the interval [0, 1] together with the open sets in [0, 1] then that forms a subspace of

the previous topological space. Examining the open interval (1
4
, 3

4
) we see that the

points 1
4

and 3
4

are (all of the) limit points for this set which are not also members

of it, and so the closed interval [1
4
, 3

4
] is the closure of this set. It is then easy to

see that the union of all open intervals of the form (k, k + 1) for k ∈ Z is dense

in R. This is not, however, a countable set so we have not done enough to show

that this topological space is separable. In fact it is separable, as Q̄ = R and Q is

28

2.4. Examples

countable. It is also locally compact and Hausdorff, but is not compact.

We now move on to look at the myope topology induced by the usual topology

over R2. An example of a continuous function f : R2 → K is any constant function,

for example:

f(x) = B(0; 1),

where B(0; 1) is the closed ball centred at the origin with radius 1. The inverse

image of this function for any open set in K is clearly either the empty set or

R2, both of which are open in the usual topology3. A more useful example of a

myopically continuous function is Minkowski addition of a constant set, i.e.

f(x) = x⊕G = {y ∈ R2 : y = x+ a for a ∈ G},

where G ⊂ R2 is some fixed set.

Moving on to measures now, if we take Z as our set then the set of all subsets

of Z (denoted 2Z) is a σ-field, so (Z, 2Z) is a measurable space. Note also that

T = {Z, 2Z} is a topological space4, and so 2Z is the class of Borel sets of T . The

set function µ : 2Z → R+ ∪ {+∞} defined by

µ(X) = n(X),

where n(X) is the number of points in X, is a measure over this space5 so that

(Z, 2Z, µ) is a measure space. The measure µ is not finite since if X = {x ∈ Z :

x > 0} then µ(X) = ∞, but it is clearly regular since under the discrete topology4

every subset of Z is both open and closed.

As an example of the application of the Radon-Nikodým theorem let µ be count-

ing measure over Z+ and ν be Poisson measure with parameter λ (i.e. ν(x) = e−λ λx

x!

for x ∈ Z+). Then ν � µ (since the empty set is the only set with zero counting

3 The reader should note that although we have used a constant function which
maps to a set which is closed in the topology on R2 we could have used any constant function
which maps to a compact set and the result would still hold.

4 For any set X, the set 2X is a topology over X and is called the discrete topology
over X. T = {X, 2X} is called a discrete space.

5 This simple measure is usually called counting measure.

29

Chapter 2. Preliminaries

measure and ν(φ) = 0) and the Radon-Nikodým derivative of ν with respect to µ

is simply

e−λλ
x

x!
.

In this instance it is unique since µ(X) > 0 whenever X is nonempty. As is

probably now obvious, Radon-Nikodým derivatives of probability measures with

respect to counting measure over a suitable subset of the integers are normally

called probability mass functions.

Finally, as a second example of the application of the Radon-Nikodým theorem,

let ρ denote standard Lebesgue measure and ν denote the Gaussian measure with

mean µ and variance σ2. Then ν � ρ and

1√
2πσ2

e−(x−µ)2/2σ2

is (a version of) the Radon-Nikodým derivative of ν with respect to ρ on (R,F)

where F is the Borel σ-field over R with respect to the standard topology. We

usually call Radon-Nikodým derivatives of probability measures with respect to

Lebesgue measure on (R,F) probability density functions.

30

Chapter 3

Perfect Simulation

3.1 Introduction

In the field of Markov Chain Monte Carlo (MCMC) (see Brooks (1998) for a good

introduction to the field and literature review) it is often useful to be able to

determine whether a Markov Chain has reached its stationary (or equilibrium)

distribution. Perfect simulation (sometimes called exact sampling1) is a method

for ensuring that a Markov chain has reached its stationary distribution.

It has long been considered a failing of MCMC that one can rarely be absolutely

sure that the Markov chain which is used for a given simulation has converged

to its stationary distribution. This means that it is not possible to generate an

unbiased sample2. It would be nice, therefore, to find a method for guaranteeing

that the chain has reached equilibrium, and thus that the resulting sample will

be unbiased. In 1992, Asmussen et al. proved that this was possible, provided

that the number of states of the Markov chain was known. It was not until 1995,

however, that a serious algorithm was developed which converged in polynomial

time (see Lovász and Winkler (1995)). Most of this work went largely ignored

by the statistical community, until Propp and Wilson (1996) produced their now

1 The almost interchangeable way the words simulation and sampling are used in
the literature may be confusing to some readers. The distinction between the two may be made
clearer by the following two statements: We use simulation to generate a sample from a given
distribution. Sampling is the process of generating one or more samples using simulation.

2 A biased sample is one whose distribution is different from the equilibrium distri-
bution of the Markov chain used to generate it, so that the estimate of any quantity depending
on the equilibrium distribution may be biased.

31

Chapter 3. Perfect Simulation

famous paper, introducing an algorithm which they called coupling from the past.

A sudden explosion of papers ensued, and since that time a multitude of papers

have been written on the subject. This chapter has two purposes. Firstly, it aims

to be an introduction to coupling from the past, and secondly it it aims to be a brief

literature review of some of the work which has been done since the publication of

Propp and Wilson’s original paper. This survey is not intended to be exhaustive,

but merely covers those areas which peaked the author’s interest.

3.2 Coupling From The Past

Coupling From The Past, or CFTP as it has become known, is an exact sampling

algorithm for discrete ergodic Markov chains with a finite number of states n, and

was introduced to the literature by Propp and Wilson (1996, 1998). Although

attempts have been made to generalise the algorithm to continuous state spaces

(notably by Murdoch and Green (1998) and Green and Murdoch (1998)), there

is still much work to be done before exact sampling becomes universally, or even

generally applicable (for example no truly general methods which work in high, or

even moderate, dimensions exist).

The motivation behind CFTP is the following: Suppose that it is desirable to

sample from the stationary distribution of an ergodic Markov chain {Zt} on some

(finite) state space X with states 1, . . . , n. It is clear that if it were possible

to go back an infinite amount in time, start the chain running (in state Z−∞)

and then return to the present, the chain would (with probability 1) be in its

stationary distribution when one returned to the present (i.e. Z0 ∼ π, where π is

the stationary distribution of the chain).

Unfortunately, owing to the impossibility of going back an infinite amount in

time, this is not a practical solution to the problem of generating the required

sample. However, an alternative is possible, using a method known as coupling.

32

3.2. Coupling From The Past

3.2.1 Coupling

The mathematical definition of coupling is the following (taken from Lindvall

(1992)):

A coupling of the probability measures P and P̃ on a measurable space (Ω,B)

is a probability measure P̂ on (Ω2,B2) such that

P = P̂ π−1 and P̃ = P̂ π̃−1

where π(x, x̃) = x and π̃(x, x̃) = x̃ for (x, x̃) ∈ Ω2.

For our purposes, however, we need only consider the following interpretation:

Given a transition rule f(·, U) for a Markov transition kernel K, two Markov

chains X and Y obeying the transition kernel K are coupled if the same random

events U determine the outcome of the transition rule f .

One consequence of this definition is that if at any time s we have Xs = Ys then

Xt = Yt ∀t ≥ s. This fact is crucial to the development of coupling from the

past.

We now return to the issue of how we simulate a chain which has been running

for an infinite amount of time. Suppose we were to set not one, but n chains

{Z(1)
t }, . . . , {Z(n)

t } running at a fixed time −M in the past, where Z
(i)
−M = i for

each chain {Z(i)
t }, and there are n states in our state space. Now let all the chains

be coupled so that if Z
(i)
s = Z

(j)
s at any time s then Z

(i)
t = Z

(j)
t ∀t ≥ s. Then if

all the chains ended up in the same state j at time zero (i.e. Z
(i)
0 = j ∀i ∈ X),

we would know that whichever state the chain passing from time minus infinity to

zero was in at time −M , the chain would end up in state j at time zero. Thus j

must be a sample from the stationary distribution of the Markov chain in question.

Suppose for example that the Markov chain which has been running since time

−∞ were in state k at time −M . Then since both this chain and {Z(k)
t } use the

33

Chapter 3. Perfect Simulation

same transition law, and they are in the same state at time −M , they will be in the

same state at time 0 as well. Thus since all of our Markov chains {Z(1)
t }, . . . , {Z(n)

t }

are in the same state j at time 0, and one of them must also be in the same state

as the chain which was started at time −∞, then j must be a sample from the

stationary distribution of the Markov chain.

Owing to the difficulty of explaining this process in abstraction I will now pro-

ceed with an example.

3.2.2 A Simple Example

Here we consider the case where our state space has only four states, labelled 1, 2,

3 and 4. Let the transition probabilities for this chain when it is in some state i be

1
2

that the next state will be state i+ 1 (where i+ 1 ≡ i if i = 4), and 1
2

that the

next state will be state i−1 (where i−1 ≡ i if i = 1). We simulate exactly from the

stationary distribution of this process by implementing the following algorithm:

1. First of all, we pick some initial value of time, M (for the purposes of this

example we have chosen M = 1).

2. Now consider four Markov chains, {Z(1)
t }, {Z(2)

t }, {Z(3)
t } and {Z(4)

t }, starting

at time t = −M and running to time t = 0. We start one in each of the four

states. We couple the four chains using the following rule:

(a) First simulate the transitions for the first chain {Z(1)
t } (by tossing a

coin, for example).

(b) Next, use the transitions of {Z(1)
t } to determine the transitions of the

other three chains as follows:

i. If Z
(1)
t+1 = Z

(1)
t + 1, or Z

(1)
t+1 = Z

(1)
t and Z

(1)
t = 4 (i.e. the chain goes

‘up’), then Z
(i)
t+1 = Z

(i)
t +1 for i = 2, . . . , 4 unless Z

(i)
t = 4, in which

case Z
(i)
t+1 = Z

(i)
t .

ii. If Z
(1)
t+1 = Z

(1)
t − 1, or Z

(1)
t+1 = Z

(1)
t and Z

(1)
t = 1 (i.e. the chain goes

‘down’), then Z
(i)
t+1 = Z

(i)
t − 1 for i = 2, . . . , 4 unless Z

(i)
t = 1, in

which case Z
(i)
t+1 = Z

(i)
t .

34

3.2. Coupling From The Past

0� �������

� ��

�

�

� �

�

�

� �

�

�

�

�

�

�

�

�

�

�� �

�	��
���

�����

Figure 3.1: A simulation of the example of CFTP described in the text.

3. Finally, examine the state of the four chains at time 0. If all four chains are

in the same state then we are done, and the state of the four chains at time

0 is an exact sample from the stationary distribution of the Markov chain.

Otherwise, double M and then return to step 2, retaining the transitions

already generated.

Note that at any given time t, we only generate one random event. This explains

why two coupled random variables, governed by probability measures P and P̃ in

the definition on page 33, are said to be constructed on the same probability space

and governed by a single probability measure P̂ .

The example we have just described was simulated by tossing a coin to determine

the transitions of the chains, letting the occurrence of a head force the coupled

chains to go ‘up’, and the occurrence of a tail force the coupled chains to go ‘down’.

The results of one simulation of this process are shown in Figure 3.1. The numbers

in the circles refer to the state which the chains passing through that state at that

time end in at time t = 0.

35

Chapter 3. Perfect Simulation

The simulation began at time t = −1, when a tail was thrown. As can be seen

in Figure 3.1, this did not result in coalescence of all the chains, so we then went

back to t = −2, where a head was tossed. We retained the tail we had tossed at

time t = −1, and again we see that all of the chains had not coalesced at time

t = 0, so we then went back to t = −4. Here we tossed a head, then a head at

t = −3 and we retained the head which was tossed at t = −2 and the tail which

was tossed at t = −1. By examining Figure 3.1 once more we see that this time

coalescence has occurred. Thus a sample from the stationary distribution of this

Markov chain is {3}.

The reason that there is no number in one of the circles (and no arrow coming

from it) is that at no point during the simulation did a chain reach state 1 at time

−3. It can be seen in the diagram that the chain actually coalesced at t = −1 to

state 4. It is important to note, however, that we must not take this point as our

sample, as this would not give an unbiased sample. This can be seen clearly in

our example, as the chain will always coalesce in either state 1 or state 4. This

is the reason why we cannot simply start our simulation (at time t = 0), wait for

all the chains to coalesce, and then assume that we will be generating an unbiased

sample from that point on.

The reason we have doubled −M each time the chains have not coalesced is that

(as Propp and Wilson (1996) show) for simple algorithms like this one, doubling is

close to (within a factor of four of) optimal if we wish to minimise the total running

time of the algorithm (which seems like a sensible goal). Our example also exposes

something else about CFTP, which is that when the coupling is monotone (i.e.

when Z
(i)
t ≥ Z

(j)
t , then Z

(i)
t+k ≥ Z

(j)
t+k for all positive k), we need only simulate the

top and bottom paths — the others are superfluous. This is indicated in Figure

3.1 by representing the superfluous paths by dashed arrows rather than solid ones.

It is precisely this monotone case where Propp and Wilson prove optimality of

the doubling scheme for choice of −M . In general the question of which scheme

to adopt for increasing M between iterations is very difficult to answer (see the

36

3.3. CFTP For Continuous State Spaces

discussion in Green and Murdoch (1998) and Section 6 of Murdoch and Rosenthal

(2000)).

3.3 CFTP For Continuous State Spaces

A limited amount of work has been done on exact sampling from a continuous state

space. In a paper published in 1998, Murdoch and Green presented a number of

methods for sampling exactly from a continuous state space, but their couplers

are rather impractical, and really serve as little more than existence proofs, as the

authors themselves admit in a follow-up article (Green and Murdoch 1998). In

that follow-up paper they present algorithms which seem rather more practical in

a (very) small number of dimensions, although there is still a great deal of work

to be done before anything which could routinely be used as part of MCMC is

developed.

The following methods all exploit ways in which an infinite number of coupled

Markov chains can be made to coalesce into a finite number of states in a single

step. The first and third are based on partitioning the update function into two

pieces (one of which does not depend on the current position of a given chain and

the other which does), while the second makes use of rejection sampling3 on a

large number of chains at the same time.

3.3.1 The Multigamma Coupler

The Multigamma Coupler4 only works when two conditions are satisfied. Firstly,

we must know the update kernel of the chain f(·|x), although this is not usually a

problem. Secondly, the update kernel must be uniformly bounded from below in

x by some non-negative function r(y) for all y in χ, the state space of the chain,

3 See, for example, Gamerman (1997) page 24 for an introduction to rejection
sampling.

4 It has been argued that the Multigamma coupler might have been called Doeblin’s
Coupler due to the similarity between the minorisation condition given implicitly in (3.1) and
Doeblin’s small sets (see Meyn and Tweedie (1993) pp. 100–110). However this concept has also
been used by several others in the literature and the authors follow the lead of Lindvall (1992)
by not giving the honours to any one person.

37

Chapter 3. Perfect Simulation

where r(·) is independent of the current state x of the chain.

If these conditions apply then we can write f(·|x) in terms of two distributions

— one which is dependent on the current position of the chain and one which is

not. For example in the one dimensional case we can write

F (y|x) = ρR(y) + (1− ρ)Q(y|x) (3.1)

where F (y|x) =
∫ y

−∞ f(v|x)dv is the cumulative density function of y given x,

ρ =
∫
r(v)dv, and

R(y) = ρ−1

∫ y

−∞
r(v)dv and Q(y|x) = (1− ρ)−1

∫ y

−∞
{f(v|x)− r(v)} dv.

If the inverses of R and Q(·|x) are available, the update function of the CFTP

algorithm is

φ(x, U) =

 R−1(U (2)) if U
(1)
t < ρ

Q−1(U (2)|Xt−1) otherwise,

where U = (U (1), U (2)) is a pair of independent U [0, 1] random numbers. This is be-

cause R and Q(·|x) are both cumulative density functions, and P (F−1(U) ≤ y) =

P (U ≤ F (y)) = F (y), for any cumulative density function F .5 The fact that the

update function is as given above means that whenever we use the distribution R,

every chain is mapped to a single point. From this fact, it is clear that the time

taken for all paths in the algorithm to coalesce is distributed geometrically with

parameter ρ (since at each time T at which all the chains have not all coalesced

to a single point, the probability of all the chains coalescing at the next iteration

is ρ).

In practice, it is often not practical to attempt to sample from Q before coales-

cence, so if the chains have not coalesced, and the decision not to sample from R

is made, then we merely proceed to the next step of the algorithm, and act as if

{Q−1(U (2)|Xt−1) : Xt−1 ∈ χ} = χ, whether that was the case or not. The update

5 This an application of the ‘method of inverses’. See Ross (1990) pp. 59–60.

38

3.3. CFTP For Continuous State Spaces

function for the CFTP algorithm is thus

Φ(Bt−1, Ut) =


R−1(U

(2)
t) if U

(1)
t < ρ

Q−1(U
(2)
t |Xt−1) if U

(1)
t ≥ ρ and Bt−1 6= χ

χ otherwise,

where Bt−1 is the set of values which we are considering in step t − 1 of the

algorithm.

The fact that coalescence time is geometrically distributed gives an efficient

method of using multigamma coupling. Begin the CFTP algorithm at some time

−T (b1/ρc is probably a reasonable choice). First generate a single Geom(ρ)

random variate, G0. If G0 ≤ T then coalescence has occurred. Generate one draw

from R. Using this as a starting value, iterate the chain T −G0 times using only

draws from Q. The result is a draw from the required distribution. If G0 > T ,

generate a second Geom(ρ) random variate G1. If G1 ≤ T do as above, except we

must now iterate the chain 2T − G1 times. Repeat this procedure until a value

Gj ≤ 2j−1T is obtained.

The requirement Gj ≤ 2j−1T is used rather than, as might have been expected,

Gj ≤ 2jT because due to previous iterations, we know that the chain has not

coalesced between time −2j−1T and time 0. Thus the requirement must be for

coalescence between time −2jT and time −2j−1T , i.e. Gj ≤ 2j−1T as stated.

The condition f(·|x) ≥ r(y) ∀x, y ∈ χ can be relaxed slightly to allow for

uniform (lower) boundedness on each of a finite collection of (disjoint) sets {Ai},

where
⋃

iAi = χ. For ease of notation the authors also assume that ρ =
∫
ri(v)dv

is constant for each Ai, although clearly this constraint can be relaxed in prac-

tice. With these slightly modified constraints the update function for the CFTP

39

Chapter 3. Perfect Simulation

algorithm becomes

Φ(Bt−1, Ut) =



⋃
i:Ai∩Bt−1 6=0

{
R−1

i (U
(2)
t)
}

if U
(1)
t < ρ

⋃
i

{
Q−1

i (U
(2)
t |x) : x ∈ Ai ∩Bt−1

}
if U

(1)
t ≥ ρ & Bt−1 <∞

χ otherwise.

A modified version of the method using geometric random variates can be used

here too, although by necessity it is considerably more complicated. See the dis-

cussion in Green and Murdoch (1998) for further details.

From a method where it was necessary to find a uniform lower bound for the

transition kernel at each point, we now turn to Murdoch and Green’s next method,

which requires a uniform upper bound.

3.3.2 Rejection Coupling

This next method of coupling introduced to the literature by Murdoch and Green

is called rejection coupling because of its strong links to rejection sampling (see

Section 3.5 for a brief overview of rejection sampling). In fact, this method is really

just rejection sampling for a large set of distributions simultaneously, rather than

just one. It is perhaps ideally suited to MCMC, since it is only necessary to know

the updating densities of the Markov chains up to a multiplicative constant, which

is often the case in MCMC. As with ordinary rejection sampling, it is necessary for

there to exist a density h(y)/ν, where ν =
∫
h(y)dy is finite, such that if g(y|x) is

the un-normalised update density then g(y|x) ≤ h(y) for every y ∈ χ. However in

rejection coupling it is also required that the function h(y) bound g(y|x) for every

value of x (where x is the current position of the Markov chain to be updated).

The idea of this coupler is simple: First sample from h(y)/ν, and independently

sample from a U [0, 1] distribution. Let Y be the point from the first sample, and

U be the point from the second. Then for each value x of χ we perform rejection

sampling using the point (Y, Uh(Y)) as our possible update. Figure 3.2 gives an

40

3.3. CFTP For Continuous State Spaces

Figure 3.2: An example of rejection coupling: The large outer curve represents the upper
bound h(y), the other three curves represent g(y|x) for three specific values of x. The two points
joined by a line show the generation of (Y, Uh(Y)). The lower point is (Y, 0) and the upper is
(Y,Uh(Y)). In this case the algorithm will accept the point Y as a valid update for the last two
values of x, but not for the first, as the point (Y, Uh(Y)) is outside the first curve.

example of this for three values of x. We now sample repeatedly as above until we

have accepted an update for every value of x in χ. The set of all accepted Y ’s is

then the set of x’s which we consider in the next step of the CFTP algorithm.

The authors also give a number of simple examples to demonstrate the applica-

tion of these methods. We now proceed with a more practical coupler presented

in their second paper (Green and Murdoch 1998) which is based on a clever appli-

cation of the multigamma coupler to random walk Metropolis sampling

3.3.3 The Bisection Coupler — a special case of the multi-
gamma coupler

As mentioned above the bisection coupler is really just a special case of the parti-

tioned multigamma coupler where we partition the state space into a clever set of

pieces. It is applicable whenever the state space χ is a rectangle in any number of

dimensions. For the purposes of clarity we consider the case χ = [0, 1]. Suppose

41

Chapter 3. Perfect Simulation

x

de
ns

ity

-1.0 0.0 1.0 2.0

0.
0

0.
4

0.
8

1.
2

x

de
ns

ity

-1.0 0.0 1.0 2.0

0.
0

0.
4

0.
8

1.
2

Figure 3.3: An illustration of the bisection coupler. The graphs shown are the decompositions of
the N(0, 0.32) and N(2/3, 0.32) which the algorithm exploits. Reproduced with kind permission
of P. J. Green.

that the update kernel q(·) for the Metropolis-Hastings algorithm is a unimodal

symmetric random walk (see Gamerman (1997) pp. 166-7). Then it can be shown

that we can cut the area under the graph of q into pieces given by overlaps with

the graphs of q(·− 2−k) for k ∈ Z+ and reconstruct the pieces to represent q(·−x)

for any x ∈ χ. We can then sample from under the graph of q(·) to get updates

for each x ∈ χ by allowing the update for a given point x to be the point under

the graph of q(· − x) (which has been constructed from the graph of q(·)) which

corresponds under the reconstruction to the point which was drawn from q(·). The

fact that each partition of q(·) occurs in only a finite number of positions (if it is

the partition given by overlap with q(· − 2−k) then it only occurs in 2k different

positions) means that the transitions for chains started everywhere in [0, 1] will

(almost surely) only result in a finite number of positions after the first transition.

If the number of positions is unreasonably large, the usual trick of just pretend-

ing that no coalescence at all has occurred is used (see Section 3.3.1 above) to

save on both computer time and memory. See Figure 3.3 for an example of a

decomposition and reconstruction with Normal proposal densities.

42

3.4. Perfect Simulation For Spatial Processes

3.3.4 Further results using CFTP on continuous state
spaces

The work by Green and Murdoch is not the only work which has attempted to use

coupling from the past to sample from general distributions of interest in Bayesian

statistics. Other work includes (Møller and Nicholls 1999), which makes use of

simulated tempering and seems to be the most generally applicable work so far;

(Mira, Møller, and Roberts 2001), which exploits the monotonicity properties of

the slice sampler; and (Hobert et al. 1999), which looks at perfect simulation of

mixture distributions with two or three components.

3.4 Perfect Simulation For Spatial Processes

We cover perfect simulation of spatial point processes in some depth in Chapter

4. Here we give a brief overview of the field.

Since spatial point processes have a natural partial ordering induced by the

number of points in a given region of interest6, both monotone CFTP and Fill’s

algorithm (covered in Section 3.5) have been successfully applied to the simulation

of these processes. The problem that there are in general no maximum elements

in these processes is overcome using the concept of stochastic domination, which is

similar in concept to stochastic monotonicity introduced on page 36. Recall that a

Markov chain (or process) is stochastically monotone with respect to a particular

partial ordering ≤ of the state space if, given two realisations X1 and X2 such that

X1
t ≤ X2

t , then X1
t+s ≤ X2

t+s for every positive s. A Markov chain (or process) Y

stochastically dominates a second Markov chain (or process) X with respect to a

particular partial ordering ≤ of the state space, if Xt ≤ Yt implies that Xt+s ≤ Yt+s

for every positive s.

The first work on applying perfect simulation to spatial point processes was by

Kendall (1998), where the idea of using stochastic domination to overcome the

6 More precisely, two point configurations x and y are related by the partial order-
ing x � y if x ⊆ y

43

Chapter 3. Perfect Simulation

absence of a maximum element was introduced. This work discussed a method of

simulating the area-interaction process of Baddeley and van Lieshout (1995). The

use of stochastic domination earned this technique the name dominated CFTP.

The work of this paper is discussed in some depth in Chapter 4.

Häggström et al. (1999) found an alternative way of sampling the attractive

area-interaction process exactly by sampling the penetrable sphere model (Widom

and Rowlinson 1970) using a two-component Gibbs sampler. They also successfully

simulated the continuum random-cluster model, a point process model which has

the number of connected components as the weighting exponent. Thönnes (1999)

then used the ideas of Häggström et al. (1999), but applied Fill’s algorithm (Fill

1998) rather than CFTP in order to obtain a perfect simulation algorithm which

is free of user-impatience bias. See Fill (1998) for a discussion of this subtle bias

introduced by terminating long runs of the algorithm before an exact sample is

obtained. We discuss Fill’s algorithm in Section 3.5.

In a paper which was actually published before his initial paper, Kendall (1997)

extended his work to the case where the weighting exponent is something called

a quermass integral. This basically means that rather than using the area of the

union of the grains of the points in the process as the weighting exponent, either

the perimeter length or the Euler functional of the union of the grains of the points

in the process is used. The Euler functional is equal to the number of connected

components minus the number of holes in those components, so this model is

similar to the continuum random-cluster model considered by Häggström et al.

(1999). One slight weakness of this work is that most of it only works for the two

dimensional case.

Kendall and Møller (1999) generalised the work in Kendall (1998) to all locally

stable point processes, i.e. all point processes satisfying the inequality

f(X ∪ {x}) ≤ Kf(X), (3.2)

where f is the density of the distribution with respect to the unit rate Poisson

44

3.5. Fill’s Algorithm

process, X ⊆ Ω is some finite configuration, K is a finite constant and x ∈ Ω \

X (Ω is some compact window). Clearly equation (3.2) simply states that the

Papangelou conditional intensity must be uniformly bounded. This is the case

for many point processes including the Strauss process and the area-interaction

process, amongst others. For a more complete list see Kendall and Møller (1999).

Further work making use of perfect simulation of spatial point processes has

been done by Lund and Thönnes (2000), who discuss a Bayesian model of a noisily

observed point configuration; by Loizeaux (2001), who discusses a Bayesian model

for finding cluster-centres underlying a data set; and by Berthelsen and Møller

(2001), who discuss inference for pairwise interaction point processes. Fernández

et al. (1999) also introduce a new algorithm for perfect simulation which does not

rely on any aspects of stochastic monotonicity.

3.5 Fill’s Algorithm

Fill’s algorithm (Fill 1998) is an alternative method of perfect sampling based on

rejection sampling.

Rejection sampling is a method of obtaining a sample from some density π(x)

by sampling from a second density p(x) which is easier to sample from and for

which there exists a constant C such that

π(x)

p(x)
≤ C ∀x ∈ Ω.

A sample X is drawn from p together with an auxiliary sample U from a U [0, 1]

distribution. The sample is accepted as a draw from π if

U ≤ π(X)

Cp(X)
. (3.3)

See Gamerman (1997) Section 1.5.1 for further details.

Fill’s algorithm is less general than CFTP because it requires that the state space

Ω be finite and for there to exist a partial ordering ≤Ω such that the time reversal

P̃ of the transition matrix P of the Markov chain is monotone with respect to it.

45

Chapter 3. Perfect Simulation

There must also exist unique maximal and minimal elements 1̂ and 0̂ respectively.

Finally, we require a measure

K(x,y)(x
′, y′) = P(f̃(y, U) = y′|f̃(x, U) = x′),

where f̃(·, U) is a monotone transition rule for P̃ such that we can sample from

K(x,y)(x
′, ·) whenever P̃ (x, x′) > 0 and x ≤Ω y.

The algorithm is a simple 3-step procedure:

1. Run the chainX forward in time using P forN steps with 0̂ as the initial state

to obtain a sample z of PN(0̂, ·), recording the trajectory (X0 = 0̂, . . . , XN =

z).

2. Reverse the direction of the trajectory obtained in step 1 to obtain a tra-

jectory (X̃0 = z, . . . , X̃N = 0̂) of P̃ conditioned on starting in state z and

ending in state 0̂.

3. Simulate a second Markov chain Y using the measure K(X̃i,Yi)
(X̃i+1, ·) where

the initial state Y0 of Y is 1̂.

If the final state YN of Y is 0̂ then z is accepted as a draw from π. If not, double

N and start again independently of the trajectories obtained in the previous run.

3.5.1 Proof of the validity of Fill’s algorithm

Fill’s algorithm works because P(YN = 0̂|X̃0 = z, X̃N = 0̂, Y0 = 1̂) is the accep-

tance probability for rejection sampling where (by comparison with equation (3.3))

PN(0̂, ·) is the density p, z is the sample X and π(0̂)
/
P̃N(1̂, 0̂) is the constant C.

The expression π(0̂)
/
P̃N(1̂, 0̂) is a suitable upper bound for π(z)

/
PN(0̂, z) be-

cause from the detailed balance criterion7, P̃ is given by

P̃ (x, y) =
π(x)P (y, x)

π(y)
. (3.4)

7 The reader should note that the detailed balance condition used in equation (3.4)
is not the same as that given in equation (4.4) on page 57. Equation (4.4) deals with transition
rates, whereas equation (3.4) deals with transition probabilities.

46

3.5. Fill’s Algorithm

for x s.t. π(x) > 0 and thus

π(z)

PN(0̂, z)
=

π(0̂)

P̃N(z, 0̂)
≤ π(0̂)

P̃N(1̂, 0̂)

by monotonicity. Hence the acceptance probability is given by

P̃N(1̂, 0̂)

π(0̂)
× π(z)

PN(0̂, z)
=
P̃N(1̂, 0̂)

π(0̂)
× π(0̂)

P̃N(z, 0̂)
=
P̃N(1̂, 0̂)

P̃N(z, 0̂)
.

Now

P(YN = 0̂|X̃0 = z, X̃N = 0̂, Y0 = 1̂) =
P(YN = 0̂, X̃N = 0̂|X̃0 = z, Y0 = 1̂)

P(X̃N = 0̂|X̃0 = z, Y0 = 1̂)

=
P(YN = 0̂|X̃0 = z, Y0 = 1̂)

P(X̃N = 0̂|X̃0 = z)
,

since the chain is monotone and X is independent of the starting point of Y .

Furthermore,

P(YN = 0̂|X̃0 = z, Y0 = 1̂)

P(X̃N = 0̂|X̃0 = z)
=
P̃N(1̂, 0̂)

P̃N(z, 0̂)
,

the correct acceptance probability.

3.5.2 Applications and extensions of Fill’s algorithm

Like CFTP, one of the drawbacks to the original version of Fill’s algorithm is

that it is only applicable to finite state spaces. This restriction has been partially

overcome in two papers. Firstly, as mentioned in Section 3.4, Thönnes (1999) used

Fill’s algorithm to simulate the penetrable spheres mixture model using the work

of Häggström et al. (1999) to obtain the required monotonicity. Using similar

methods to Thönnes (1999), Møller and Schladitz (1999) applied Fill’s algorithm

to discrete but not necessarily finite models (for example lattice models) which are

specified conditionally, i.e. the distribution of some random vector X = (Xi)i∈I is

given by the conditional distributions P (Xi|{Xj : j 6= i; i, j ∈ I}). The obvious

example of this type of model is the auto-Poisson model (see Cressie (1993), chapter

6), and indeed this is one of the simulation examples given in the paper.

A further restriction of Fill’s algorithm is that is only works if the time-reversed

chain is monotone. Fill et al. (2000) have extended the algorithm for general

47

Chapter 3. Perfect Simulation

chains, although the state space must still be finite. Huber (1999) uses these

results to sample from the stationary distribution some non-monotone chains and

develops some theory pertaining to the running time of Fill et al.’s algorithm in

comparison to CFTP.

3.6 Other Perfect simulation algorithms

Coupling from the past and Fill’s algorithm are not the only perfect simulation

algorithms, merely the first and most widely used. Another is the method of

Fernández et al. (1999) for spatial point processes and lattice models mentioned

in Section 3.4, which uses the same spatial birth and death model as its basis as

the dominated coupling from the past algorithm of Kendall (1998), but requires

no monotonicity. Yet another is the method of Cai (1999), which makes use of

auxiliary variables and uses a single run of a Markov chain, out of which exact

samples are picked. Finally, Fill and Huber (2000) introduced a method called

the Randomness Recycler, which generates perfect samples, but without using the

traditional Markov chain framework.

3.7 Conclusions

During this chapter we have seen that Coupling From The Past shows great

promise of solving the problem of stationarity in Markov Chain simulation. There

is, however, much work remaining to be done if it is to truly fulfil this promise. As

yet, it still only really works effectively when the state space is finite, or when sim-

ulating certain spatial point processes. In general when the state space is infinite

there have been a number of nice ideas (which effectively reduce the infinite state

space to a finite one by using a variety of tricks), but nothing truly revolutionary.

So far the signs are that CFTP may fail to deliver on its promising beginning.

One of the main problems is the enormous amount of work, both computational

and analytic, which goes into the generation of a single exact sample. The question

48

3.7. Conclusions

is, “Is it worth it?” Is the overhead of great analytic and computational effort which

goes into generating a single exact sample so restrictive as to make the technique

effectively worthless in the long run?

In the general Bayesian setting I am tempted to say “yes” to this last ques-

tion, although in particular situations where there is a lot of natural stochastic

monotonicity (as in the spatial work by Kendall and others) dominated CFTP

still shows some promise (aided by the fact that in the spatial context it is often

useful even to have just a small number of exact samples). This idea of stochastic

monotonicity may, however, be the key. If it were possible to set up a method

like the birth-death method (see Sections 4.1.3 and 4.1.4) in the spatial case which

used easy-to-sample draws from a distribution with heavier tails than the desired

distribution and used an accept/reject rule to generate a sample from the true

distribution, then it is possible that dominated CFTP could prove more generally

useful. Sadly, this has turned out to be more difficult than was initially hoped.

49

Chapter 4

Spatial Point Processes

Spatial point processes are all around us. From the distribution of people in a room

or particles in a box, to the locations of cities across the world and even the relative

positions of stars in the universe, an enormously wide spread of phenomena can be

modelled as a random configuration of points in two or three dimensional space.

In this chapter we begin by introducing the reader to the simplest spatial point

process model, the Poisson process, before moving on to a more complex model,

the area-interaction process. At each stage we continue the themes introduced

in Chapter 3 by showing not only how to simulate these models, but how to

simulate them perfectly. In the case of the area-interaction process, this requires

an extension of coupling from the past.

After introducing these standard models, we then move to discuss methods for

analysing spatial point patterns, before introducing a new spatial point process

model. We show how to simulate this model perfectly using coupling from the

past. Finally, we use the methods of analysis introduced earlier to check what

kind of behaviour we can expect from spatial point processes of this form.

4.1 Spatial Point Processes

In this section we introduce the simplest type of spatial point process — the

homogeneous Poisson process — before moving on to discuss the area-interaction

process (which contains the Poisson process as a special case) in Section 4.1.2.

50

4.1. Spatial Point Processes

Firstly, however, we must mention some notational conventions which we have

used below.

We follow the lead of Cressie (1993) by making the following distinction between

points and events: let X be a point configuration in some locally compact metric

space χ. Then we call an element x ∈ X an event, and an element ξ ∈ χ a point.

Using this definition, it might be more correct to begin to call spatial point pro-

cesses “spatial event processes” and point configurations “event configurations”,

but we will retain the former names, as there does not seem to be any possibility

of confusion here. We will sometimes refer to the element of χ where there is an

event in X as the location of that event.

4.1.1 The Poisson Process

Let χ be some locally compact complete metric space and Rf be the space of all

possible configurations of points in χ. Let µ be a finite Borel regular measure on

χ. Then N is a homogeneous Poisson process with intensity λ if

• The number of events N(A) in any bounded region A of χ has a Poisson

distribution with parameter λµ(A).

• Given that there are n events in A, their locations are independent and form

a random sample from a uniform distribution on A.

This definition immediately gives a method for simulating a Poisson process over

a rectangle R ⊂ R2. If the length of R is given by L and the width by W then

we first draw from a Poisson(LW) distribution to find the number of events in R.

We then scatter the events uniformly within R by drawing two U [0, 1] numbers

x and y for each event and placing the event at location (Lx,Wy), where the

first coordinate signifies the distance along the side of length L and the second

signifies the distance along the side of length W . In Section 4.1.3 we discuss some

further methods of simulating the homogeneous Poisson process and then use those

methods together with CFTP to enable us to simulate the area-interaction process

(Baddeley and van Lieshout 1995).

51

Chapter 4. Spatial Point Processes

In this thesis we often talk about complete spatial randomness. When we do so,

we are talking about spatial point patterns whose behaviour is the same as that

of the homogeneous Poisson process. A general or inhomogeneous Poisson process

is one for which λ is not a constant, but varies over χ.

4.1.2 The Area-Interaction Point Process

The area-interaction point process was first proposed in 1995 by Baddeley and

van Lieshout as a model which was suitable for producing “both moderately clus-

tered and moderately ordered patterns”. It is interesting precisely because it does

produce clustered patterns, something which the more traditional Strauss process

(see Strauss (1975)) fails to do, as was pointed out by Kelly and Ripley (1976).

We consider the model in its most general setting, as we will need this generality

when we come to discrete models in Section 5.1. We then go on to give the most

typical example of this model.

Let χ be some locally compact complete metric space and Rf be the space of

all possible configurations of points in χ. Let ν be a finite Borel regular measure

on χ and Z : χ → K be a myopically continuous function (where K is as usual

the class of all compact subsets of χ). Then the probability density of the general

area-interaction process is

p(X) = αλN(X)γ−ν(U(X)) (4.1)

with respect to the unit rate Poisson process1, where X = {x1, . . . , xn} ∈ Rf ,

U(X) =
⋃n

i=1 Z(xi) and N(X) is the number of points in the configuration X.

The crucial thing to do now that we have made the definition is to show that

it makes sense — in other words to show that the density (4.1) is measurable and

integrable. Baddeley and van Lieshout prove this and for completeness we repeat

1 The reader should note that spatial point process densities are almost always
given with respect to the unit rate Poison process, and this statement refers to the fact that
the expression in (4.1) is the Radon-Nikodým derivative with respect to the unit rate Poisson
process rather than the standard Lebesgue measure since the Lebesgue measure is, for obvious
reasons, not suited to measuring configurations! For a brief background on the Radon-Nikodým
theorem see Sections 2.2 and 2.4.

52

4.1. Spatial Point Processes

their proof since it will help us when we come to extend the area-interaction process

in Section 4.4.

Let t > 0 and consider V = {X ∈ Rf : ν(U(X)) < t}. We will show that

V is open in the weak topology with respect to the function U , and thus that

ν(U(X)) is weakly upper semicontinuous. Since we know that upper or lower

semicontinuous functions are measurable it is then a short road to showing that

(4.1) is measurable.

Pick X ∈ V . Then since ν is regular there is an open set G ⊂ χ containing

U(X) such that ν(G) < t as well. Now clearly X has no events in the set H = {x ∈

χ : Z(x) ∩ Gc 6= φ}, and Z(H) ⊂ J = {K ∈ K : K ∩ Gc 6= φ}, which is a closed

set in the myopic topology. Clearly Z−1(J) = H, and since Z is a myopically

continuous function this shows that H is also closed2. It is now easy to see that

W = {Y ∈ Rf : N(YH) = 0} (where YH is the restriction of the configuration Y

to the set H) is open in the weak topology with respect to the function U , and

since V is the union of a collection of sets of the form W then V is also open.

This shows that X → ν(U(X)) is weakly upper semicontinuous. Thus the map

X → exp(−ν(U(X)) log γ) is weakly upper semicontinuous if γ ∈ (0, 1) and weakly

lower semicontinuous if γ > 1. Thus X → exp(−ν(U(X)) log γ) is measurable.

Since λN(X) is clearly measurable this means that (4.1) is measurable.

To see that (4.1) is integrable note that

0 ≤ ν(U(X)) ≤ ν(χ) <∞. (4.2)

Now the function f(X) = λN(X) is integrable, since this is simply the Radon-

Nikodým derivative of the Poisson process with rate λ with respect to the unit

rate Poisson process. Hence (4.1) is dominated by an integrable function, and

therefore integrable3. 2

2 It can be shown that the inverse image of a closed set with respect to a continuous
function is closed.

3 In fact this shows that the generalised area-interaction process measure is uni-
formly absolutely continuous with respect to the λ-rate Poisson process measure and so its
Radon-Nikodým derivative is uniformly bounded.

53

Chapter 4. Spatial Point Processes

Figure 4.1: An example of some events together with circular “grains” G. The events in the
above diagram would be the actual members of the process. The circles around them are to show
what the set X ⊕G would look like. If γ were large, the point configuration on the right would
be favoured, whereas if γ were small, the configuration on the the left would be favoured.

As a specific example we consider the standard two dimensional case where

the measure is Lebesgue and the myopically continuous function is Minkowski

addition:

p(X) = αλN(X)γ−m(X⊕G), (4.3)

where G is some compact subset of χ. Here 0 < γ < 1 is the repulsive case, while

γ > 1 is the attractive case. The case γ = 1 gives total spatial randomness.

As a further simplification consider the case where G is a disk of radius r. Then

the setX⊕G is the set of all points within a distance r of an event inX. See Figure

4.1 for illustration. It is easy to see that in this simple case the area-interaction

process is Markov of range 2r.

We see that (4.3) reduces to the Poisson process with rate λ when γ = 1.

The density (4.3) also looks superficially similar to the Strauss process, which has

density

p(X) = αλN(X)γs(X),

where s(X) is the number of pairs of events within a distance r of one another,

and also reduces to the Poisson process with rate λ when γ = 1. However, the

area-interaction process is well-defined for γ > 1, while the Strauss process is non-

integrable for these values of γ (Kelly and Ripley 1976). Thus the area-interaction

54

4.1. Spatial Point Processes

process can produce clustered point patterns, whereas the Strauss process cannot.

4.1.3 Simulation of the Poisson Processes

In this section we discuss two further methods for simulating the Poisson process.

For a more general background in simulation see Ross (1990). The material here is

important background to Section 4.1.4, where the simulation of the area interaction

process is discussed. For simplicity we will only discuss simulation on a rectangular

subset of R2 although the methods can be extended fairly naturally.

The first method is an almost trivial modification of the method discussed at

the beginning of this section. Say we wish to simulate a Poisson process with rate

λ on a rectangular box R having length L and width W . Then first we simply

generate Exponential(λ) random variables4 Xi until n is the smallest integer such

that

Sn =
n∑

i=1

Xi > L×W.

Second, we generate (n− 1) U [0, 1] random variables, Ui. Finally, the coordinates

of the locations of the (n− 1) events in the realisation of the Poisson process with

rate λ over R which we have just generated are (Si/W,WUi), where the origin

of this coordinate system is a corner of R and the first coordinate is the distance

along the side of length L, the second along the side of length W .

To see why this method is equivalent to the method discussed earlier we need

only consider the first coordinate, as the second coordinate is identical in both

cases. In considering the inter-event distances we must consider the probability

that there are no events in the interval [a, b] for arbitrary a and b such that a < b.

Now since the events are uniformly distributed it is clear that

P (p ∈ [a, b]) =
b− a

L

for each event p in the configuration. Thus if we label the events p1, . . . , pk we see

4 See Norris (1997) Section 2.4 for details of generating exponential random
numbers.

55

Chapter 4. Spatial Point Processes

that

P (pi 6= [a, b] ∀i ∈ 1, . . . , k|k = n) =

(
1− b− a

L

)n

.

Since k ∼ Poisson(λ) we have

P (pi 6= [a, b] ∀i ∈ 1, . . . , n) =
∞∑

n=0

e−λλn

n!

(
1− b− a

L

)n

= e−λ

∞∑
n=0

(
λ
(
1− b−a

L

))n
n!

= e−λ × exp

{
λ

(
1− b− a

L

)}
= e−λ(b−a)/L.

Thus inter-event distances are exponentially distributed with parameter λ/L just

as in the method outlined above.

We now come to the second and more general method of simulating a Poisson

process. This is a Markov process method utilising a birth-death process.

Define the transition rate of a Markov process X from state r to state s with

r 6= s to be

q(r, s) = lim
h→0

P (X(t+ h) = s|X(t) = r)

h
.

Let χ be some locally compact complete metric space (e.g. (Z, d) with d(x, y) =

|y − x|) and Rf be the space of all possible configurations of points in χ. Let

r, s ∈ Rf and let Nr(p) be the number of events at p ∈ χ under configuration r.

Then a Markov process Z is called a birth-death process if q(r, s) = 0 unless

• r and s differ at only a single location p ∈ χ and

• |Ns(p)−Nr(p)| = 1.

If these conditions hold and Ns(p)−Nr(p) = 1 then q(r, s) is called the birth rate

of Z at p and q(s, r) is called the death rate of Z at p. In the case of the Poisson

process these will be independent of the location p. The standard procedure is

to have the death rate as unity and to have a more complicated rate as the birth

rate. Let r and s be identical configurations except for one event, x, which is in s

56

4.1. Spatial Point Processes

and not in r. When the death rate is unity the detailed balance condition5

π(r)q(r, s) = π(s)q(s, r) (4.4)

allows us to find the birth rate because equation (4.4) becomes simply

q(r, s) =
π(s)

π(r)
, (4.5)

where q(r, s) is the rate at which the birth-death process moves from state r to

state s and is thus the birth rate. Noting that we may write s = r ∪ {p} we see

that (4.5) becomes

q(r, s) =
π(r ∪ {p})

π(r)
,

and see that the birth rate is simply the Papangelou conditional intensity of a

point process introduced in Section 2.36.

The density of a Poisson process of rate λ (with respect to a unit rate Poisson

process) is

p(X) = αλN(X),

where N(X) is the number of events in the configuration X and α is a normalising

constant. Thus the birth rate for a Poisson process with rate λ is simply

q(r, s) =
αλN(s)

αλN(r)
= λ,

since s has one more event in it than r. Clearly the Poisson process is one example

of a birth-death process whose birth rate is independent of location.

This gives a very simple way to evolve a Poisson process through time. Starting

from some initial configuration, generate an Exponential(1) random number for

each event in the configuration. These are the death times of the events. Now

generate a collection of Exponential(λ) random numbers and for each of these, an

5 The detailed balance equation is important because whenever it holds for a
Markov chain (or process) then that Markov chain (or process) is reversible, and reversibility is
a sufficient condition for stationarity. See Kelly (1979) chapter 1 for further details.

6 It is easy to see that if we define the birth rate to be unity the death rate must
be the inverse of the Papangelou conditional intensity.

57

Chapter 4. Spatial Point Processes

Exponential(1) random number so that we have a collection of pairs of random

numbers (xi, yi). The cumulative partial sums of the xi’s are the birth times

bi =
∑i

j=1 xi of new events whose death times are given by bi + yi. When a death

occurs we remove that event from the configuration. When a birth occurs a new

event is put into the configuration at a random (Uniform) position.

Due to the detailed balance condition this process will tend asymptotically to a

Poisson process of rate λ. Thus if the initial configuration is obtained from the one

of the first two methods of simulating a Poisson process then the Markov process

will always give a Poisson configuration. This fact will be used in the following

section.

4.1.4 Perfect Simulation of the Area-Interaction Process

In this section, we review the method of Kendall (1998) for the perfect simu-

lation of the area-interaction process. For simplicity, we first restrict attention

to the attractive case of the area-interaction process (i.e. the case where γ > 1).

Throughout this section we assume that we are generating an area-interaction pro-

cess on the unit square in R2 and are using the standard two dimensional Lebesgue

measure, although all of the results generalise to any kind of bounded compact

window and most reasonable measures (to be precise, it must be a totally finite,

Borel-regular measure).

As was mentioned in Section 3.4, the reason dominated CFTP got its name is

that the perfect simulation of this process depends upon the stochastic domination

of the process by the underlying Poisson process with rate λ, and depends upon

the fact that we can sample directly from the stationary distribution of this Poisson

process. We showed how this is done in Section 4.1.3.

The procedure is as follows: We obtain a sample of the Poisson process with

rate λ and call this the state at time zero. We then evolve the process backwards

until some fixed time −T , using a birth and death process with death rate equal

to 1 using the method described at the end of the Section 4.1.3.

58

4.1. Spatial Point Processes

After this has been done, we next give all the events that exist in the sample

in the interval [−T, 0] marks generated from a U [0, 1] distribution. These marks

will be used for rejection sampling, and so are denoted P (x), where x is the event,

since they will be used for determining the outcome of events which occur with a

certain probability. So far, except for the strange insistence upon generating the

process backwards, this all looks like the standard process of simulating a spatial

point process using birth-death models. We now apply monotone CFTP to make

the simulation exact.

Recursively define two new processes, Y max and Y min as follows. The initial

configurations at time −T for the processes are

Y max(−T,−T) = {x : x ∈ Z(−T)}

Y min(−T,−T) =
{
x : x ∈ Z(−T) and P (x) ≤ γ−m(G)

}
where Z(−T) is the underlying Poisson process which we just simulated at time

−T , P (x) is the U [0, 1] mark given to the event x and G is the compact set

introduced in equation (4.3).

The processes are then generated forwards in time to time t = 0 in the following

way:

At each time u in [−T, 0] assume that the processes have been generated up to

that time, and suppose that the next birth or death to occur happens at time ti.

If a birth happens next then we accept the birth for our Y processes if

P (x) ≤ γ−m((x⊕G)\Y (−T,u)⊕G), (4.6)

where x is the event to be born and Y is either Y max or Y min depending upon

which process we are generating. Figure 4.2 gives two examples of the construction

(x⊕G) \ Y (−T, u)⊕G.

If, however, a death happens next then if the event is present in either of our

processes we remove the dying event, setting

Y (−T, ti) = Y (−T, u) \ {x}.

59

Chapter 4. Spatial Point Processes

���������
	���
��

���������
	���
��

����
�������������������	���
����

����
�������������������	���
����

�

�

Figure 4.2: Another look at Figure 4.1 with some shading added to show the process of simula-
tion. Dark shading shows Y (−T, u)⊕G where Y (−T, u) is the state of the process immediately
before we add the new event. Light shading shows the amount added if we accept the new event.
In the configuration on the left, x⊕G = (x⊕G) \ (Y (−T, u)⊕G), so that if we are simulating
an attractive process we are very unlikely to accept the new event. In the configuration on the
right we are adding very little area to (Y (−T, u) ⊕ G) by adding the event, so we are far more
likely to accept this event in an attractive process.

All that now remains is to define Y (−T, u+ ε) = Y (−T, u) for u < u+ ε < ti.

From equation (4.6) and the fact that we are accepting/rejecting events from a

process with birth rate λ, we see that events are born at rate

λ× γ−m((x⊕G)\Y (−T,u)⊕G),

which is exactly the Papangelou conditional intensity of the area-interaction pro-

cess. It is clear that events die at a constant rate of 1. Thus detailed balance

shows us that both Y max and Y min converge in distribution to an area interaction

process.

If these two processes are identical at time zero (i.e. if Y max(−T, 0) =

Y min(−T, 0)), then we have the required sample from the area-interaction pro-

cess with rate parameter λ and attraction parameter γ. If not, we extend the

underlying Poisson process back in time to time −(T + S), generate additional

U [0, 1] marks (keeping the ones already generated), and start again.

To see why the argument works imagine that the underlying Poisson process

Z has been going since time −∞. This ‘thought experiment’ works because we

have generated Z in stationarity. The area-interaction process generated using

60

4.1. Spatial Point Processes

the same random events as Z will clearly have fewer members than Z, but those

members it has will be members of Z. Thus our Y max works as a substitute

‘maximum’ process (since there is no ‘True’ maximum process) and Y min is a

suitable ‘minimum’ process since γ−m(G) is a lower bound on the proportion of the

events in Z which will be in the area-interaction process (since this is based on the

quantity m(X ⊕G) when there is only one event in X).

The repulsive case is handled using a few simple modifications. If γ < 1, then

clearly λγ−m(G) > λ, so that λ is no longer an upper bound on the birth rate, but

is actually a lower bound. This is easy to fix, however, as λγ−m(G) is an upper

bound. Thus for the repulsive case we use a Poisson process with rate λγ−m(G)

as our dominating process and change the definition of Y min(−T,−T) and the

acceptance/rejection step. Change Y min(−T,−T) to

Y min(−T,−T) =
{
x : x ∈ Z(−T) and P (x) ≤ γm(G)

}
,

since λγ−m(G) × γm(G) = λ. The acceptance/rejection step is a little more tricky,

as the obvious modification of accepting an event when

P (x) ≤ γm(G)−m((x⊕G)\Y (−T,u)⊕G)

breaks the stochastic monotonicity, as we then accept events in the minimum pro-

cess with higher probability than in the maximum process (assuming that there

are fewer events in the minimum process than the maximum process). However

this can be fixed by accepting events in the maximum process according to the

acceptance probability for the minimum process and accepting events in the mini-

mum process according to the acceptance probability for the maximum process as

follows:

• Accept events in Y max if

P (x) ≤ γm(G)−m((x⊕G)\Y min(−T,u)⊕G).

• Accept events in Y min if

P (x) ≤ γm(G)−m((x⊕G)\Y max(−T,u)⊕G).

61

Chapter 4. Spatial Point Processes

An interesting consequence of this last modification is that the minimum and

maximum processes are no longer Markov processes when treated individually,

though the joint process (Y max, Y min) is Markov.

4.2 Descriptive statistics

The purpose of this section is to give a brief overview of some of the descrip-

tive statistics used to characterise spatial point processes. We present only the

definition and the most näıve estimators. A more complete discussion is outside

the scope of this thesis, and the reader is referred to Cressie (1993) for more in-

depth coverage. In particular we do not discuss the often important area of edge

correction, nor do we discuss any spaces other than Rn.

4.2.1 Nearest neighbour measures

An important class of functions used in characterising spatial point processes are

the nearest neighbour measures. These measures use point-to-event and event-

to-event distances, and range from simple minimum inter-event distances to more

complex ratios of inter-event and point-to-event distances.

4.2.1.1 Minimum inter-event distances

This simple statistic was introduced by Ripley and Silverman (1978) as a quick

method to determine whether further investigation of spatial interaction was nec-

essary. For the sake of brevity we consider only R2. Silverman and Brown (1978)

show that in the case where n events are distributed independently with density

f , {
n(n− 1)π

∫
f 2

}
di

D
−−→χ2

2i as n→∞

where di is the ith-smallest inter-event distance. In the usual case of a uniform

density over some region of area A,∫
f 2 = 1/A.

62

4.2. Descriptive statistics

4.2.1.2 The empty space distribution F

For a stationary point process, the empty space function F (r) is simply the prob-

ability that there is an event within r of a randomly chosen point ξ ∈ Rn:

F (r) = P
[
n{b(ξ, r)} > 0

]
.

In other words, if we were to drop a circle of radius r onto a point process, F (r)

tells us the probability that there will be at least one event in the circle.

To estimate this, we essentially drop a large number of these circles onto our

configuration and count the number of times the circle contains at least one event.

To do this it is usual to consider either a regular grid or a collection of Uniformly

generated points over the sampling window as an auxiliary collection of ξs. If we

let di be the distance from the ith auxiliary point (whether grid-based or random)

to the nearest event in the configuration of interest we may estimate F by

F̂ (r) =
1

n

n∑
i=1

I(di < r), for r > 0,

where n is the number of auxiliary points. If we are not sampling on a torus or

other surface without boundary it is clearly necessary to perform edge correction

of some sort.

Empirical estimates of F are normally compared against complete spatial ran-

domness, for which theoretical values of F are available. In particular, in R2 we

have

F (r) = 1− exp(−λπr2).

See Cressie (1993) for details.

4.2.1.3 The nearest neighbour distribution G

The nearest neighbour function G(r) of a point process X is the probability that

there is an event within r of a randomly chosen event ξ ∈ Rn:

G(r) = P!
ξ

[
n{b(ξ, r)} > 0

]
,

63

Chapter 4. Spatial Point Processes

where the reduced Palm distribution P!
ξ is as defined in Section 2.3 and ξ ∈ X is

arbitrary.

For the purposes of estimation let n be the number of events observed and di be

the distance from the ith event to its nearest neighbour, where we have imposed

some arbitrary labelling on the events. Then we may estimate G by

Ĝ(r) =
1

n

n∑
i=1

I(di < r), for r > 0.

As with F̂ (r) above, edge correction may be necessary if we are observing on a

surface with a boundary.

As with F , empirical estimates of G are normally compared against complete

spatial randomness, for which theoretical values of G are available. In particular,

in R2 we have

G(r) = 1− exp(−λπr2),

which is the same as we had for F above. See Cressie (1993) for details. This fact

is the motivation behind the next test function.

4.2.1.4 The J function

The J function (van Lieshout and Baddeley 1996) is based on F and G above and

is defined as

J(r) =
1−G(r)

1− F (r)
, for r > 0 and F (r) < 1

and can be estimated by

Ĵ(r) =
1− Ĝ(r)

1− F̂ (r)
, for r > 0 and F̂ (r) < 1.

Under complete spatial randomness (i.e. for the homogeneous Poisson process)

J(r) = 1 for all r, while J < 1 indicates clustering and J > 1 indicates regular-

ity. The J function has several very nice properties, one of which we discuss in

Section 4.3.3.

64

4.2. Descriptive statistics

4.2.2 The K function

Perhaps the most frequently used measure of spatial structure is the K function,

whose use goes back to Bartlett (1964), though its popularity is mainly due to the

work of Ripley (1976, 1977). It measures the expected number of events within r

of an arbitrary event as follows:

K(r) =
|B|

E{n(X)}
E!

ξX{b(ξ, r)},

where E!
ξ is expected value with respect to the reduced Palm distribution as defined

in Section 2.3 and we are observing a bounded region B ∈ B0. It is important to

note that this definition is only valid for stationary point processes.

Despite theK function’s popularity it is important to realise that it is insufficient

to examine this statistic alone if we are to accurately characterise the behaviour

of a point pattern. Doing so would be analogous to assuming that the mean and

variance of a real valued random variable were sufficient to characterise the distri-

bution from which it was drawn. To exemplify this point Baddeley and Silverman

(1984) develop a model whose K function matches that of the Poisson process, but

which is clearly not completely spatially random. Interestingly Kerscher (1998)

shows that the J function (Section 4.2.1.4) successfully distinguishes between these

two models and Schladitz and Baddeley (2000) show that the T function (Section

4.2.3) is also capable of discriminating between the Poisson process and Baddeley

and Silverman’s model. Somewhat curiously, the J function seems to emphasise

the regularity of Baddeley and Silverman’s model, whereas the T function detects

clustering.

The K function can be estimated by

K̂(r) =
|B|
n

∑
i6=j

I{d(ei, ej) < r}
n− 1

where n is the number of observed events and d(ei, ej) is the distance between the

ith and jth events (where we have imposed an arbitrary labelling on the events).

65

Chapter 4. Spatial Point Processes

Ripley (1976) gives an edge corrected estimator for the case where we are sampling

on a region with a boundary.

As with F , G and J above, empirical estimates for K are normally compared

against complete spatial randomness, for which theoretical values ofK are available

(see Ripley (1977)), and in fact come out rather nicely. In particular, in R2 we

have

K(r) = πr2.

Due to this result, Besag (1977b) suggests that we consider a variation, L, of the

form

L(r) =
√
K(r)/π,

since L(r) = r for the homogeneous Poisson process. In fact, as Cressie (1993)

suggests, it is even easier to see what is going on if we plot L(r)− r.

4.2.3 The T function

The T function (Schladitz and Baddeley 2000) can be considered as a natural

extension of the K function introduced in the previous section. Whereas the K

function considers the expected number of events within r of an event, the T

function considers the number of pairs of events which are

• within r of a specific event, and

• within r of each other.

Formally, the T function is defined as

T (r) =
|B|2

2
[
E{n(X)}

]2 E!
ξ

∑
x,y∈b(ξ,r)

I
{
0 < d(x, y) ≤ r

}
, for r ≥ 0,

where we again observe a bounded region B ∈ B0 and E!
ξ is again with respect to

the reduced Palm distribution of the process.

Schladitz and Baddeley (2000) give various methods for estimating T . We give

a version without edge correction:

T̂ (r) =
|B|2

2n(n− 1)(n− 2)

∑
x∈X

∑
y,z∈X

par(x, y)par(x, z)par(y, z),

66

4.3. Parameter estimation techniques

where par(x, y) is the indicator function that events x and y constitute an r-close

pair, i.e.

par(x, y) = I
{
0 < d(x, y) ≤ r

}
.

The reader is referred to Schladitz and Baddeley (2000) for a discussion of edge-

corrected estimators for T .

The crucial property of the T function is that it is a measure of third order

interaction in the process. This means that it can distinguish some point processes

whose first and second moments are similar, whereas if we were only to use the K

function and measure the intensity we would not be able to do so. In particular,

as mentioned in Section 4.2.2, it is able to distinguish between the Poisson process

and the cell process of Baddeley and Silverman (1984).

Under complete spatial randomness it is possible to calculate theoretical values

for the T function. In particular in R2 we have

T (r) =
1

2
π(π − 3

4

√
3)r4.

Similarly to Besag’s suggestion for plotting theK function, Schladitz and Baddeley

(2000) suggest plotting

4

√
2T̂ (r)

π(π − 3
4

√
3)

− r

rather than T̂ (r) directly.

4.3 Parameter estimation techniques

There is not much point having a model without any way to estimate the param-

eters. We briefly introduce various approaches to this problem in the following

sections.

67

Chapter 4. Spatial Point Processes

4.3.1 Maximum likelihood

For many spatial point process models, we only know the density to within a

constant of proportionality, i.e.

p(x) = cg(x)

where the normalising constant c is often not analytically known. As a result,

standard maximum likelihood estimation relies on Monte-Carlo estimates of the

normalising constant of the likelihood. We do not discuss the method further, but

refer the reader to Geyer and Thompson (1992) for further information.

4.3.2 Maximum Pseudo-likelihood

The method of maximum pseudo-likelihood goes back to Besag (1974, 1975,

1977a), though we base our treatment on the approach used by Jensen and Møller

(1991). The pseudo-likelihood of a point process X with Papangelou conditional

intensity λ(u;X) over a subset A ⊂ W is

PLA(θ,X) =

[∏
xi∈A

λ(xi;X)

]
exp

{
−
∫

A

λ(u;X)du

}
,

where we observe events xi in a bounded window W . This is similar to the likeli-

hood, which for independent events is the product of the density of those events.

Here instead we use a product of conditional intensities at the events given the

remainder of the configuration, since the likelihood itself is usually intractable.

As usual with likelihood equations we take logs, differentiate and set equal to

zero. Under regularity conditions (so that we can interchange the order of inte-

gration and differentiation) this gives equations∑
xi∈A

∂

∂θ
log λ(xi;X) =

∫
A

∂

∂θ
λ(u;X)du,

for each parameter θ in the model. Jensen and Møller (1991) prove that for

exponential family models PLA(θ,X) is concave and for Markov models of finite

range it is also consistent.

68

4.3. Parameter estimation techniques

Baddeley and Turner (2000) develop useful methods for estimating the pseudo-

likelihood using existing statistical packages. A worked example is presented in

Section 4.4.3.

4.3.3 Takacs-Fiksel estimation

The Takacs-Fiksel estimation method uses the identity

µE!
af(X) = E[λ(a;X)f(X)], (4.7)

which holds for any bounded measurable non-negative function f : N → R+ and

any stationary point process X on Rd with finite intensity µ. As usual, E!
a is with

respect to the reduced Palm distribution and λ(a;X) is the Papangelou conditional

intensity of X at a (see Section 2.3).

Estimation requires choosing a number of functions greater than or equal to the

number of parameters in the model.

For the area-interaction process described in Section 4.1.2, Baddeley and van

Lieshout (1995) invite us to consider the case where f(X) in (4.7) is

f(X) =
1{X∩B(a,s)=φ}

λ(a;X)
.

This is the indicator function that there is not an event in X within s of a divided

by the conditional intensity of X at a. In the case of the area-interaction process

this becomes

f(X) =
1{X∩B(a,s)=φ}

λγ−m((a⊕G)\(X⊕G))
.

An important special case of this is when s > 2d where d is the maximum distance

between a point in a ⊕ G and a (d = r in the special case where G is a disk of

radius r centred at a). For this special case we have

f(X) =
1{X∩B(a,s)=φ}

λγ−m(G)
= 1{X∩B(a,s)=φ}

γm(G)

λ
. (4.8)

We can now substitute this in to both sides of equation (4.7). The left hand

69

Chapter 4. Spatial Point Processes

side is

µE!
af(X) = µ

∫
1{X∩B(a,s)=φ}

γm(G)

λ
dP !

a(X)

= µP!
a{X ∩B(a, s) = φ}γ

m(G)

λ

and the right hand side is simply

E[λ(a;X)f(X)] = P{X ∩B(a, s) = φ},

which follows directly from equation (4.8).

We see that the equation becomes

µ
1−G(s)

1− F (s)
= λγ−m(G). (4.9)

where G(s) is the nearest neighbour distribution function of Section 4.2.1.3 and

F (s) is the empty space distribution function of Section 4.2.1.2. Thus equation

(4.9) becomes simply

µJ(s) = λγ−m(G),

where J(s) is the J function introduced in Section 4.2.1.4 and the equation is valid

for s > 2d, as stated above.

We do not discuss this method further except to say that under many models

pseudo-likelihood estimation is a special case of the Takacs-Fiksel method where

the functions f are taken to be

f(X) =
∂

∂θ
λ(u,X).

See Baddeley and van Lieshout (1995) and the references contained therein for

further details.

4.4 An extension of the area-interaction process

The area-interaction process is a flexible model which allows for a good range of

models — from regular through total spatial randomness to clustered. Unfortu-

nately it does not allow for models whose behaviour changes at different resolu-

tions, for example repulsion at small distances and attraction at large distances.

70

4.4. An extension of the area-interaction process

Some real-world examples of places where we see this sort of behaviour are the dis-

tribution of trees on a hillside, or the distribution of zebra in a patch of savannah.

Another example of large scale attraction and small scale repulsion is the interac-

tion between the strong nuclear force and the electro-magnetic force between two

oppositely charged particles. The physical laws governing this behaviour are dif-

ferent from those governing the behaviour of the area-interaction class of models,

though they may be sufficiently similar so as to provide a useful approximation.

In an attempt to develop a model with these characteristics we propose a model

with the following density:

p(X) = αλN(X)γ
−m(X⊕G1)
1 γ

−m(X⊕G2)
2 , (4.10)

where α, λ, N(X), m and X ⊕G are as in equation (4.3), γ1 ∈ [1,∞), γ2 ∈ (0, 1]

and G1 and G2 are two grains of different sizes. Usually we will have G1 ⊃ G2,

resulting in small scale repulsion and large scale attraction. Clearly in the simple

case where G1 and G2 are balls of radius r1 and r2 then this point process is Markov

of range max{r1, r2}. For the sake of compactness, from here on we will refer to

this new point process as the attractive-repulsive process.

A trivial extension of the proof that the area-interaction process density is both

measurable and integrable (see pages 52–53) shows that this process is also both

measurable and integrable. We outline the extension below.

The proof on pages 52–53 shows that the map X → γ−ν(U(X)) is weakly u.s.c. if

γ ∈ (0, 1) and weakly l.s.c. if γ > 1, where ν is any finite Borel regular measure

over some locally compact complete metric space χ, and U(X) =
⋃n

i=1 Z(xi), where

Z(xi) is any myopically continuous function Z : χ → K. Clearly this is sufficient

to show that the mapping X → γ
−m(X⊕G1)
1 is weakly l.s.c. and the mapping

X → γ
−m(X⊕G2)
2 is weakly u.s.c. Thus since X → λN(X) is clearly measurable so

is (4.10).

Equation (4.2) on page 53 is sufficient to show that (4.10) is integrable.

71

Chapter 4. Spatial Point Processes

4.4.1 Simulation

Perfect simulation of the above process is possible by an extension of the method

for simulating the standard area-interaction process. We begin by noting that the

Poisson process with rate

λ× γ
−m(G2)
2

dominates (4.10). Thus we begin by simulating a Poisson process with rate λ ×

γ
−m(G2)
2 and use this as our configuration at time 0. We then simulate the process

backwards until some time −T using a birth-death process with death rate equal

to 1. These two steps are performed using the methods of Section 4.1.3. For

consistency of notation, again let Z(t) denote the configuration of events in this

process at time t. Just as in the standard area-interaction process algorithm

we then give all the events that exist in the model in the interval [−T, 0] marks

generated from a U [0, 1] distribution. Next we recursively define two new processes

Y max and Y min just as in Section 4.1.4:

We begin by defining the configurations at time −T :

Y max(−T,−T) = {x : x ∈ Z(−T)}

Y min(−T,−T) =
{
x : x ∈ Z(−T) and P (x) ≤ γ

−m(G1)
1 γ

m(G2)
2

}
where P (x) is the U [0, 1] mark given to the event x. The two parameters of the

Y ’s refer to the time at which the process starts and the time at which we are

examining its value respectively. For example Y max(−T, u) is the value at time u

of the Y max process which was started at time −T and simulated according to the

rules given below.

The Papangelou conditional intensity of our process is

λ(u,X) = λγ
−m((u⊕G1)\X⊕G1)
1 γ

−m((u⊕G2)\X⊕G2)
2 ,

so we see from equation (4.4) on page 57 that births must occur at rate

q(X,X ∪ {x}) = λγ
−m((x⊕G1)\X⊕G1)
1 γ

−m((x⊕G2)\X⊕G2)
2 ,

72

4.4. An extension of the area-interaction process

where X is the state of the process prior to a birth and x is a new event being born.

Since we are simulating this process with respect to a Poisson process with rate

λ× γ−m(G2)
2 this means that as we simulate the maximum and minimum processes

forwards in time we should accept births if

P (x) ≤ γ
−m((x⊕G1)\X⊕G1)
1 γ

m(G2)−m((x⊕G2)\X⊕G2)
2 .

However this breaks the monotonicity of the process, as it sometimes results in

higher acceptance probabilities for the minimum process than it does for the max-

imum process. This is easy to rectify, as the acceptance probability is a product

of monotonic functions. We find that if we accept events in the maximum process

whenever

P (x) ≤ γ
−m((x⊕G1)\Y max⊕G1)
1 γ

m(G2)−m((x⊕G2)\Y min⊕G2)
2 (4.11)

and accept events in the minimum process whenever

P (x) ≤ γ
−m((x⊕G1)\Y min⊕G1)
1 γ

m(G2)−m((x⊕G2)\Y max⊕G2)
2 (4.12)

then monotonicity is restored. It is also easy to see that the stationary distribution

of this new process is as required, although the maximum and minimum processes

are no longer individually Markov processes, though the combined process

(Y max, Y min)

is Markov. This is similar to the repulsive case for the standard area-interaction

process covered in Section 4.1.4.

This differs from the approach taken by Kendall and Møller (1999) in a cou-

ple of ways. Firstly, the initial configuration of the minimum process used by

Kendall and Møller was the empty configuration, whereas we used rejection sam-

pling on the dominating processes, rejecting those events whose marks were greater

than γ
−m(G1)
1 γ

m(G2)
2 . Secondly, our acceptance probabilities (Equations (4.11) and

(4.12)) are different. The advantages of our method are:

• The minimum process is initially either closer to the maximum process than

Kendall and Møller’s minimum process, or at least as close.

73

Chapter 4. Spatial Point Processes

• Our acceptance probabilities are much easier to compute7.

The disadvantage of our method is that the difference between the acceptance

probability for our maximum process and the acceptance probability for our min-

imum process is greater than (or equal to) the difference between the acceptance

probabilities used by Kendall and Møller. This means that although the accep-

tance probabilities used in our method are faster to compute, the minimum and

maximum processes will take more steps to coalesce. Our feeling is that the ad-

vantages outweigh the disadvantage, though more work is needed to show whether

this is indeed true.

Having discussed the birth-behaviour of our process in some detail, we proceed

by spelling out the algorithm as a whole.

The processes are generated forwards in time to time t = 0 in the following way:

At each time u in [−T, 0] assume that the processes have been generated up to

that time, and suppose that the next birth or death to occur happens at time ti.

If the next event is a birth, then we accept the birth for Y max if

P (x) ≤ γ
−m((x⊕G1)\Y max(−T,u)⊕G1)
1 γ

m(G2)−m((x⊕G2)\Y min(−T,u)⊕G2)
2

where x is the event to be born. We accept the birth for Y min if

P (x) ≤ γ
−m((x⊕G1)\Y min(−T,u)⊕G1)
1 γ

m(G2)−m((x⊕G2)\Y max(−T,u)⊕G2)
2 .

If, however, the next event is a death, then we remove the dying event from

our processes, setting

Y (−T, ti) = Y (−T, u) \ {x}.
7 The acceptance probabilities used by Kendall and Møller were

max{λ(u, Y)/K : Y min ⊆ Y ⊆ Y max} and
min{λ(u, Y)/K : Y min ⊆ Y ⊆ Y max}

for the maximum and minimum processes respectively, where λ(u, Y) is the Papangelou con-
ditional intensity of the process of interest and K is the rate of the dominating process. This
clearly involves calculation of λ(u, Y) for each configuration that is both a subset of Y max and
a superset of Y min. Since calculation of λ(u, Y) is typically expensive, this calculation may be
very expensive.

74

4.4. An extension of the area-interaction process

All that now remains is to define Y (−T, u+ ε) = Y (−T, u) for u < u+ ε < ti.

If these two processes are identical at time zero (i.e. if Y max(−T, 0) =

Y min(−T, 0)), then we have the required sample from the attractive-repulsive pro-

cess. If not we extend the underlying Poisson process back in time to time −(T+S)

for some S > 0, generate a few more U [0, 1] marks (keeping the ones already gen-

erated), and start again generating the processes forwards to time t = 0 again.

The same reasoning which lead us to see that the algorithm in Section 4.1.4

correctly simulated the desired distribution also applies to this new process, since

the true process will again be sandwiched in between the maximum and minimum

processes.

4.4.2 Descriptive Statistics

To give examples of the type of behaviour it is possible to model with an attractive-

repulsive process, we simulated 1000 draws from the process for different parameter

values and calculated average values of F̂ , Ĝ, Ĵ , K̂ and T̂ (see Sections 4.2.1.2,

4.2.1.3, 4.2.1.4, 4.2.2 and 4.2.3), as well as statistics for minimum inter-event dis-

tances (see Section 4.2.1.1).

In all cases discussed below we set λ = 100, simulate on the unit square and let

the measure, m be Lebesgue scaled by a factor of 10π. This was done because it

was discovered that in order to get point configurations which were significantly

different from complete spatial randomness, it was necessary to have a very large

value of γ1 and a very small value of γ2. Scaling by a factor of 10π handles this

effectively, as it is equivalent to raising γ1 and γ2 to the power of 10π. We chooseG1

and G2 to be circles with radii r1 and r2 respectively. All processes were generated

with toroidal boundary conditions and the test functions were estimated similarly.

As a base line, we set γ1 = γ2 = 1, which generates a Poisson process (the

values of r1 and r2 are irrelevant). We also simulated small scale attraction with

large scale repulsion using parameters γ1 = 100, γ2 = 0.1, r1 = 0.03 and r2 = 0.1,

and small scale repulsion with large scale attraction with parameters γ1 = 10,

75

Chapter 4. Spatial Point Processes

•••••••
••••

•••
•••

•• •••••
•••

•••
•••

•••
••••

••••
•••••

•••••••
•••••••••••

••••••••••••••••••••••••••••••••••••

favep

fp

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4.3: Probability plot of the F̂ function averaged over 1000 realisations
of a Poisson process compared with the theoretical value for complete spatial
randomness.

γ2 = 0.01, r1 = 0.1 and r2 = 0.03. Figures 4.3 to 4.13 show plots of F̂ , Ĝ, Ĵ ,

K̂ and T̂ functions for these three processes8, computed as an average over 1000

simulations. Simulation was performed using the perfect simulation techniques

discussed in the previous section to produce independent draws. Discussion of this

implementation is postponed until Chapter 7.

One traditional way to view F̂ and Ĝ functions is to draw probability plots such

as those in Figures 4.3 to 4.8, comparing empirical values against the theoretical

values under complete spatial randomness. Inspired by Besag’s suggestion for the

K̂ function that we should transform the values based on the theoretical value

under complete spatial randomness, in Figures 4.9 and 4.10 we plot

Ê(r) =

√
− 1

λ̂π
log(1− F̂ (r)) − r (4.13)

and

Ĥ(r) =

√
− 1

λ̂π
log(1− Ĝ(r)) − r. (4.14)

8 As suggested in Section 4.2.2, we plot L̂(r)− r rather than K̂.

76

4.4. An extension of the area-interaction process

•••••••
••••

•••
•••

••• ••
•••

•••
•••

•••
••••

••••
•••••

•••••••
•••••••••••

•••••••••••••••••••••••••••••••••••

gavep

gp

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4.4: Probability plot of the Ĝ function averaged over 1000 realisations
of a Poisson process compared with the theoretical value for complete spatial
randomness.

••••••••
••••

•••
•••

•••
• •• ••••••••

•••
•••

•••
••••

••••
•••••

••••••
••••••••

••••••••••••••
••••••••••••••••••••••••

favear

fa
r

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4.5: Probability plot of the F̂ function averaged over 1000 realisations of
an attractive-repulsive process with parameters γ1 = 100, γ2 = 0.1, r1 = 0.03 and
r2 = 0.1 compared with the theoretical value for complete spatial randomness.

77

Chapter 4. Spatial Point Processes

••••••••
••••

•••
•••

••• •• ••• •••••
•••

•••
•••

•••
•••

••••
••••

•••••
••••••

•••••••••
••••••••••••••••

•••••••••••••••••••••••••••••

gavear

ga
r

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4.6: Probability plot of the Ĝ function averaged over 1000 realisations of
the attractive-repulsive process of Figure 4.5 compared with the theoretical value
for complete spatial randomness.

••••••
•••

•••
•• ••••

•••
•••

•••
••••

••••
•••••

••••••••
••••••••••••••••

••••••••••••••••••••••••••••

favera

fr
a

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4.7: Probability plot of the F̂ function averaged over 1000 realisations of
an attractive-repulsive process with parameters γ1 = 10, γ2 = 0.01, r1 = 0.1 and
r2 = 0.03 compared with the theoretical value for complete spatial randomness.

78

4.4. An extension of the area-interaction process

••••••
•••

•••
••

••• ••••
•••

•••
••••

•••••
••••••

•••••••••
••••••••••••••••••••••••••••••

••

gavera

gr
a

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4.8: Probability plot of the Ĝ function averaged over 1000 realisations of
the attractive-repulsive process of Figure 4.7 compared with the theoretical value
for complete spatial randomness.

Comparing these graphs with the probability plots in Figures 4.3 to 4.8 we see

that it is far easier to see the behaviour of the different processes in the transformed

plots. Another advantage is that we can compare F̂ or Ĝ functions for several

different processes on a single plot. Both 1− F̂ (t) = ε(t) and 1− Ĝ(t) = δ(t) are

such that for t ≥ 0.2 we have ε(t) < ξ and δ < ξ where ξ is the precision of the

software used to calculate F̂ (t) and Ĝ(t). As a result, we have restricted attention

to the range [0, 0.18). Both F̂ and Ĝ seem poor at picking up the short range

interactions (though Ĝ seems better than F̂), which is strange since they measure

the distributions of nearest events.

Figure 4.11 shows a plot of the Ĵ function for our three processes. A log scale

seemed most natural for this plot, as values are in the range (0,∞), with the

reference value for complete spatial randomness being one. Since F̂ and Ĝ become

one just below r = 0.2 we have again restricted attention to the range [0, 0.18).

Clearly Ĵ is not very good at picking up the short range interactions, which is as

79

Chapter 4. Spatial Point Processes

0.00 0.05 0.10 0.15

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0
0.

01
5

�

� �
� �
�� �
�

� 	��

��

� � �

�

Figure 4.9: Plot of the transformed F̂ function given in equation (4.13) averaged
over 1000 realisations of a Poisson process (solid line), an attractive-repulsive pro-
cess with parameters γ1 = 100, γ2 = 0.1, r1 = 0.03 and r2 = 0.1 (short dashes)
and an attractive-repulsive process with parameters γ1 = 10, γ2 = 0.01, r1 = 0.1
and r2 = 0.03 (long dashes).

80

4.4. An extension of the area-interaction process

0.00 0.05 0.10 0.15 0.20

−
0.

02
−

0.
01

0.
00

0.
01

�

� �
� �
�� �
�

� 	��

��

� � �

�

Figure 4.10: Plot of the transformed Ĝ function given in equation (4.14) averaged
over 1000 realisations of a Poisson process (solid line), an attractive-repulsive pro-
cess with parameters γ1 = 100, γ2 = 0.1, r1 = 0.03 and r2 = 0.1 (short dashes)
and an attractive-repulsive process with parameters γ1 = 10, γ2 = 0.01, r1 = 0.1
and r2 = 0.03 (long dashes).

81

Chapter 4. Spatial Point Processes

0.00 0.05 0.10 0.15

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

�

� �
�

� ����
	

Figure 4.11: Plot of the natural logarithm of the Ĵ function averaged over 1000
realisations of a Poisson process (solid line), an attractive-repulsive process with
parameters γ1 = 100, γ2 = 0.1, r1 = 0.03 and r2 = 0.1 (short dashes) and an
attractive-repulsive process with parameters γ1 = 10, γ2 = 0.01, r1 = 0.1 and
r2 = 0.03 (long dashes).

82

4.4. An extension of the area-interaction process

we would expect since neither F̂ nor Ĝ were very good at picking up interactions

at this range and Ĵ is merely a composite of the two.

The K̂ function, plotted in Figure 4.12, seems to be by far the best at picking up

both long and short range interactions accurately, the peaks falling in the ranges

(r1, 2r1) and (r2, 2r2) as we might hope. Plots of the K̂ function are therefore

probably best for getting rough estimates for the interaction radii for the pseudo-

likelihood estimation discussed in Section 4.4.3. We have also plotted approximate

95% pointwise confidence intervals for these curves.

The T̂ function, plotted in Figure 4.13, seems to pick up repulsion far more

easily than attraction and also seems to be very susceptible to erratic behaviour

for small values of the parameter r, though this may be being amplified by the

transformation applied. It does, however, pick up both the clustered and regular

parts of the model, though by examining the approximate pointwise confidence

intervals we see that all values below around r = 0.03 should be taken with a

pinch of salt.

In summary, plots 4.3—4.13 show that the attractive-repulsive model is indeed

capable of exhibiting clustered behaviour at one scale and repulsive behaviour at

another. A number of standard graphical summaries were considered. Among

these, the most powerful test function for discriminating this type of behaviour

appears to be the K̂ function.

Minimum inter-event distances were also computed for each of the three pro-

cesses for each of the 1000 realisations. Table 4.1 shows the number of realisations

for each process which would cause rejection of complete spatial randomness at

the 5%, 1% and 0.1% levels. The table makes it clear that minimum inter-event

distances are not an ideal way to distinguish between these models.

4.4.3 Estimation of parameters

Although a similar result to that of Section 4.3.3 applies to our attractive-repulsive

process, Graphs 4.9 and 4.10 show us that the range of values of the argument of

83

Chapter 4. Spatial Point Processes

0.0 0.1 0.2 0.3 0.4 0.5

−
0.

00
3

−
0.

00
2

−
0.

00
1

0.
00

0
0.

00
1

�

� ����
�
��

Figure 4.12: Plot of the L function averaged over 1000 realisations of a Poisson
process (solid line), an attractive-repulsive process with parameters γ1 = 100,
γ2 = 0.1, r1 = 0.03 and r2 = 0.1 (short dashes) and an attractive-repulsive process
with parameters γ1 = 10, γ2 = 0.01, r1 = 0.1 and r2 = 0.03 (long dashes). For

clarity we have plotted L̂(r)−r versus r rather that L̂(r) versus r. Dotted lines give
approximate 95% pointwise confidence intervals for the three curves, calculated as
±1.96 estimated standard errors.

84

4.4. An extension of the area-interaction process

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

−
0.

00
6

−
0.

00
4

−
0.

00
2

0.
00

0
0.

00
2

0.
00

4
0.

00
6

�

��
�

� �� �
�

	� 	

� �
�

�

�
�

Figure 4.13: Plot of the T̂ function averaged over 1000 realisations of a Poisson
process (solid line), an attractive-repulsive process with parameters γ1 = 100,
γ2 = 0.1, r1 = 0.03 and r2 = 0.1 (short dashes) and an attractive-repulsive process
with parameters γ1 = 10, γ2 = 0.01, r1 = 0.1 and r2 = 0.03 (long dashes). For

clarity we have plotted 4

√
2T̂ (r)

π(π− 3
4

√
3)
− r versus r rather that T̂ (r) versus r. Dotted

lines give approximate 95% pointwise confidence intervals for the three curves.

85

Chapter 4. Spatial Point Processes

Statistic Process 5% 1% 0.1%
Poisson 55 9 0

d1 Att-Rep 42 8 1
Rep-Att 73 14 0
Poisson 45 10 0

d2 Att-Rep 46 9 1
Rep-Att 72 17 3
Poisson 44 12 0

d3 Att-Rep 44 12 2
Rep-Att 66 18 0
Poisson 35 7 1

d4 Att-Rep 49 6 2
Rep-Att 67 19 0

Table 4.1: The table shows the number (out of 1000) of simulated realisations
of the three processes discussed in Section 4.4.2 which cause a null hypothesis
of complete spatial randomness to be rejected at the 5%, 1% and 0.1% levels.
Att-Rep refers to the process which had small scale attraction and large scale
repulsion, while Rep-Att refers to the process with small scale repulsion and large
scale attraction.

F̂ and Ĝ for which we are able to estimate the functions reliably only extend to

about 0.15. Since this is less than 2r, we are unable to make use of this result.

We may still, however, be able to make use of maximum pseudo-likelihood to

estimate the parameters λ, γ1 and γ2, since the model is from an exponential

family.

As we saw in Section 4.4.1, the Papangelou conditional intensity of our process

is

λ(u;X) = λγ
−m((u⊕G1)\X⊕G1)
1 γ

−m((u⊕G2)\X⊕G2)
2 .

Taking logs this gives

log λ(u;X) = log λ−m((u⊕G1) \X ⊕G1) log γ1 −

m((u⊕G2) \X ⊕G2) log γ2.

86

4.4. An extension of the area-interaction process

Thus the pseudo-likelihood equations for this model are

∑
xi∈A

1

λ
=

∫
A

γ
−m((u⊕G1)\X⊕G1)
1 γ

−m((u⊕G2)\X⊕G2)
2 du, (4.15)

∑
xi∈A

m((xi ⊕G1) \X ⊕G1)

γ1

=

∫
A

m((u⊕G1) \X ⊕G1)×

λγ
−m((u⊕G1)\X⊕G1)
1 γ

−m((u⊕G2)\X⊕G2)
2 du (4.16)

and

∑
xi∈A

m((xi ⊕G2) \X ⊕G2)

γ2

=

∫
A

m((u⊕G2) \X ⊕G2)×

λγ
−m((u⊕G1)\X⊕G1)
1 γ

−m((u⊕G2)\X⊕G2)
2 du, (4.17)

where we recall that A is an arbitrary subset of the window in which we observe

the point process. Clearly the main difficulty is in estimating the integrals on the

right hand side of equations (4.15) to (4.17). Baddeley and Turner (2000) tackle

this problem directly by noting that the integral in the log pseudo-likelihood

log PL(θ;X) =
∑
xi∈A

log λ(xi;X)−
∫

A

λ(u;X)du

can be approximated by ∫
A

λ(u;X)du '
m∑

j=1

λ(uj;X)wj,

where uj are points in A and wj are quadrature weights. Using and extending

an observation made by Berman and Turner (1992), they note that if the set

{uj : j = 1, . . . ,m} contains all the events {xi : i = 1, . . . , n(X)}, then the log

pseudo-likelihood may be approximated by

log PL(θ;X) '
m∑

j=1

(yj log λj − λj)wj, (4.18)

where λj = λ(uj;X), yj = zj/wj and

zj =

 1 if uj ∈ {xi : i = 1, . . . , n(X)}

0 if uj 6∈ {xi : i = 1, . . . , n(X)}.

87

Chapter 4. Spatial Point Processes

0.0 0.1 0.2 0.3 0.4 0.5

−
0.

01
0.

01
0.

03
0.

05

�

����
�
��

Figure 4.14: Redwood seedlings data. Left: The data, selected by Ripley (1977)
from a larger data set analysed by Strauss (1975). Right: Plot of the L function
for the redwood seedlings. There seems to be interaction at 3 different scales:
(very) small scale repulsion followed by attraction at a moderate scale and then
repulsion at larger scales.

For a fixed point pattern X the right hand side of (4.18) is equivalent to the log

likelihood of independent Poisson variables Yk ∼ Poisson(λk) taken with weights

wk, so (4.18) can therefore be maximised using standard software for fitting Gen-

eralised Linear Models, such as that in S-Plus.

In order to put the estimation procedure above into practice, we must have values

for r1 and r2, the radii of G1 and G2 respectively. Baddeley and Turner (2000)

suggest fitting the model for a variety of values of these “nuisance parameters”

which do not fit into the exponential family model, and choosing the values which

maximise the pseudo-likelihood. It may be wise to plot estimates of some standard

functions such as K and G in order to narrow the search somewhat. See the

previous section for more details.

4.5 Redwood seedlings

We take a brief look at a data-set which has been much-analysed in the literature,

the Redwood seedlings data first introduced by Strauss (1975). We examine a

88

4.5. Redwood seedlings

0.0 0.1 0.2 0.3 0.4 0.5

−
0.

02
0.

02
0.

06
0.

10

�

����
�
��

0.00 0.10 0.20 0.30

−
0.

05
0.

00
0.

05
0.

10
0.

15

�

�

�
������
	

�

 �

� �

 �
	

�
�

Figure 4.15: L and T function plots of the redwood seedlings data. Left: L-function
plots of the data together with simulations of the attractive-repulsive model with
parameters R1 = 0.07, R2 = 0.013, λ = 0.118, γ1 = 2000 and γ2 = 10−200. Dotted
lines give an envelope of 19 simulations of the model, the solid line is the redwood
seedlings data and the dashed line is the average of the 19 simulations. Right: The
same for the T function.

subset of the original data chosen by Ripley (1977) and later analysed by Diggle

(1978) among others. The data are plotted in Figure 4.14. We wish to model this

data using the attractive-repulsive model we have introduced. From an inspection

of the estimated K-function (right pane in Figure 4.14) of the data using Ripley’s

edge correction scheme (Ripley 1977) we estimate values of R1 and R2 as 0.07

and 0.013 respectively, giving repulsion at small scales and attraction at moderate

scales. It also seems that there is some repulsion at slightly larger scales, so it may

be possible to use R2 = 0.2 and to model the large scale interaction rather than

the small scale interaction as we have chosen.

Fitting the remaining parameters by eye again, we chose values λ = 0.118,

γ1 = 2000 and γ2 = 10−200. The remarkably small value of γ2 was necessary

because the value of R2 was also very small. It is clear from these numbers that

it would be more natural to define γ1 and γ2 on a logarithmic scale. Figure

4.15 shows K and T function plots for 19 simulations from this model, providing

89

Chapter 4. Spatial Point Processes

approximate 95% monte-carlo confidence envelopes for the values of the functions.

It can be seen that on the basis of these functions, the model appears to fit the

data reasonably well.

The plots show several things: Firstly that the model fits reasonably well, but

that it is possible that we chose a value of R1 which was slightly too large. Perhaps

R1 = 0.06 would have been better. Secondly, it seems that the large scale repulsion

may an important factor which should not be ignored. Thirdly, in this case we

have gained little new information by plotting the T function — the third order

behaviour of the data seems to be similar to the second order structure.

4.6 Conclusions

We have developed an extension of the area-interaction process which incorporates

both repulsion and attraction and given a method for perfect simulation of this

process. We have shown using standard descriptive functions that the properties

of this process are as we have claimed, and demonstrated a method for parametric

inference for model fitting. We have also given a small application to the redwood

seedlings data introduced by Strauss (1975).

It would be interesting to see how well our model would fit if we were to choose

to model the large scale interactions in the redwood seedlings data rather than

the small scale interactions. It would also be interesting to see how the automatic

method of parametric inference discussed in Section 4.4.3 performed on this data

set.

90

Chapter 5

Lattice Processes

Lattice processes are the discrete cousin of spatial point processes. These are

interesting mainly because of the fact that in many cases real-world data is only

sampled on a discrete grid, rather than a true continuous space. An example of

lattice data would be the number of instances of some disease in each county in

England. In contrast to spatial point processes, where we usually allow only single

events at each location, with lattice data we usually have either multiple events

at a single location, or a measurement of a continuous variable at each location.

An example of where this is not true is in image analysis, where black and white

images can be thought of as a lattice model with ‘white’ being represented by ‘one

event’ and ‘black’ as ‘no events’. For a more detailed treatment of lattice models

see Cressie (1993). In this chapter we are particularly interested in extending the

spatial processes of Baddeley and van Lieshout (1995) discussed in Chapter 4 to

discrete spaces.

5.1 Area-interaction processes on discrete space

Before discussing these models we introduce some notation which will allow us to

discuss these models with less confusion. The notation used in this chapter is not

consistent with that used in Chapter 4. This is due to the fact that the material

in this chapter is more concerned with simulation issues. As a result, words like

‘event’, ‘point’ and ‘location’ have natural uses which are distinct from their uses

91

Chapter 5. Lattice Processes

in the previous chapter.

• A location is a vertex of the grid (or non-directed graph) upon which we are

sampling.

• A point is an incident at a specific location in the grid. There may be multiple

‘points’ at one location at any given instant in time, or there may be none.

For some models we will specify that the maximum number of points which

may exist at a single location is one.

Following the work of Møller and Waagepetersen (1998) we refer to those models

where the density can be written as a product of terms pertaining to each connected

component within the set of possible locations and where there is only allowed to

be a maximum of one point per location as Markov connected-component fields.

The components are connected by the presence of points at neighbouring locations.

Let Z be the grid we are concerned with, for example Z might be a rectangular

lattice, or a (undirected) binary tree, or any other non-directed graph. Also let

χ = {0, 1}Z be the state space of possible configurations of points within the grid.

Now let∼ be a reflexive and symmetric relation on Z andK be the set of all possible

subsets of Z which are connected by ∼, i.e. K ∈ K ⇐⇒ ∀i, j ∈ K ∃x1, . . . , xn

such that i = x1 ∼ x2 · · ·xn−1 ∼ xn = j. Now let X ∈ χ be a non-empty set of

points on the grid Z (a realisation of some random process). We define a reflexive

and symmetric relation ∼X based on ∼ which is the connected components relation

on X by

i ∼X j ⇐⇒ ∃x1, . . . , xn ∈ Z s.t. i = x1 ∼ · · · ∼ xn = j

and

∀k ∈ 1, . . . , n− 1, (xk ∈ X or xk+1 ∈ X) (or both).

Then X is a Markov connected-component field if

p(X) = α
∏

K∈K(X)

ΦK(XK),

92

5.1. Area-interaction processes on discrete space

where XK is X restricted to the set K rather than Z and K(X) is the set of

maximally connected components in X, i.e. if i ∈ K ∈ K(X) then i ∼X j =⇒

j ∈ K.

In the case of the area-interaction process we return to the notation used for the

general area-interaction process given in equation (4.1) on page 52 and define the

density by

p(X) = αλN(X)γ−m(U(X)), (5.1)

where as in Section 4.1.2 we have U(X) =
⋃n

i=1K(xi). We define K(x) to be x

together with those locations which are connected to x by an edge1. If m is the

counting measure we see that this model fits neatly into the definition of a Markov

connected component field.

5.1.1 An attempt at perfect simulation

Since the state space of the model we have introduced in the previous section is

finite it would be possible to simply write down the probabilities of each configura-

tion and then invent a measure-preserving map from [0, 1] to our new distribution,

thus enabling us to generate draws from our distribution using U [0, 1] random num-

bers, which we can simulate easily. This is often not practical, because although

the state space is finite, it is often extremely large (if the grid χ upon which we

are sampling has n locations then the state space has 2n different configurations).

Clearly it would be convenient if we could extend the perfect simulation of the

continuous space area-interaction process (Kendall 1998) to the discrete model we

have just proposed, since this would overcome the problems associated with the

large state space. By natural extension we propose a binomial process with rate λ

for the dominating process. We now discuss a suitable method for simulating this

process.

Let r be some configuration of points on our grid of locations and let s be a

1 This only transfers the issue to a different part of the modelling procedure, as we
can often choose which locations to link by edges

93

Chapter 5. Lattice Processes

configuration which differs from r at a single location x only. Let s have a point

at x and r have no point there. Next, define q(y, z) as the rate at which we move

from state y to state z in a time-evolving process. If we now view r and s as two

states in a time-evolving binomial process then q(r, s) can be viewed as the birth

rate at x and q(s, r) can be seen as the death rate at this location. Since we wish

to simulate a binomial process with rate λ it is clear that we must have

q(r, s)

q(s, r)
= λ. (5.2)

It is easy see that acceptable choices of the birth and death rates would be λ and 1

respectively, and indeed we always work with a death rate of 1 since this allows us

to concentrate on the birth rate, just as in the continuous case. From the detailed

balance equation

π(s)q(s, r) = q(r, s)π(r),

we see that equation (5.2) gives

π(s)

π(r)
= λ. (5.3)

Now let the probability that there is a point at a given location be ν, so that

the probability that there is no point there is (1− ν). Since we are considering a

binomial process this value is the same for all locations in the grid. If we label the

locations x1, . . . , xn then by independence

π(s) =
n∏

i=1

p(xi = si),

where si is the state of location xi under configuration s. Also

π(r) =
n∏

i=1

p(xi = ri),

where again ri is the state of location xi under configuration r. By our initial

definitions of r and s we have ri = si ∀i s.t. xi 6= x and p(point at x) = ν, so that

we have

π(s) = ν
∏
xi 6=x

p(xi = si)

94

5.1. Area-interaction processes on discrete space

and

π(r) = (1− ν)
∏
xi 6=x

p(xi = si)

so that

π(s)

π(r)
=

ν
∏

xi 6=x p(xi = si)

(1− ν)
∏

xi 6=x p(xi = si)
=

ν

1− ν
.

Thus from (5.3) we have

ν

1− ν
= λ

and so

ν =
λ

1 + λ
.

From this information it is easy to see that we can modify the algorithm in Section

4.1.3 for simulating a time-evolving Poisson process to simulate a time-evolving

binomial process in the following way.

We begin by generating an initial configuration by allowing there to be a point at

each location with probability λ/(1 + λ). To do this we generate a U [0, 1] number

for each location in turn. If this is less than λ/(1+λ) then there is a point at that

location (and if not then there is no point there).

Starting from this initial configuration we then simulate the process through

time using parallel birth-death processes at each location. To do this we gener-

ate an exponential(1) number for each location which has a point in the initial

configuration. These are the death times of these points. We then generate an

exponential(λ) number for each of the locations which does not have a point in

the initial configuration. These are the birth times of new points which will be at

these locations.

We then begin evolving the process through time. When we reach a time when

there is an event (either a birth or a death) we add a point to the location where

the event is happening if we have reached a birth time and remove a point from

that location if we have reached a death time. If it was a birth then we generate an

exponential(1) number, add this to the current time and record this as the death

time of the point. If it was a death then we generate an exponential(λ) number,

95

Chapter 5. Lattice Processes

add this to the current time and record this as the birth time of the point. We

then continue on to the next event and repeat the above procedure. At any time

we may stop and we will have a draw from a binomial process with rate λ.

Now that we have a method for simulating a time-evolving binomial process

perfectly we can attempt to use this to dominate a discrete area-interaction process.

Before discussing this we introduce some notation and terminology which enables

us to express this algorithm and the algorithms of the following sections more

clearly.

• Recalling the notation on page 92, a point is an incident at a specific location

in a birth-death process which is simulated on the grid. This ‘point’ has a

birth time and a death time.

• M is a positive number (usually an integer, though this is not a requirement).

As is usual in dominated CFTP we initially pick M and simulate a dominat-

ing process backwards in time from time 0 to time −M . We then simulate

candidate maximum and minimum processes (which may or may not be true

maximum and minimum processes) from time −M forwards to time 0 us-

ing the transitions of the dominating process (i.e. the candidate maximum,

candidate minimum and dominating processes are coupled). If the candidate

maximum and candidate minimum processes are equal at time 0 then our

work is done. Otherwise we double M and repeat the process, keeping the

transitions of the dominating process which we have already generated.

• The next event at a given location is the next time (moving forwards in time)

that there is a positive probability that the state of the candidate maximum

process will change at that location, given the transitions of the dominating

process. The next event after time −M is also called the first event.

As we have just discussed, we begin by simulating a binomial process with rate

λ (as detailed above) backwards in time from time t = 0 to time t = −M . Each

96

5.1. Area-interaction processes on discrete space

point which is alive at any time during [−M, 0] is given a U [0, 1] mark. We then

simulate our candidate maximum and candidate minimum processes forwards in

time according to the following rules.

The state of the candidate maximum process at time t = −M is the same as

the state of the dominating binomial process. The candidate minimum process is

like the maximum process except that we reject every point whose mark is greater

than γ−M(χ), where

M(χ) = max
χ

(m(K(x))) (5.4)

and χ is the grid of locations upon which we are simulating the process. More

formally, the two processes can be defined at time t = −M by

Y max(−M,−M) = {x : x ∈ Z(−M)} and

Y min(−M,−M) =
{
x : x ∈ Z(−M) and P (x) ≤ γ−M(χ)

}
,

where Z(t) is the dominating time-evolving binomial process and Y (t1, t2) is the

candidate process which started at time t1 and is currently at time t2.

We then evolve the two new processes using the same method as was applied

for the continuous area-interaction process, namely we proceed forwards in time

towards time t = 0 using the following algorithm:

At each time u in [−T, 0] assume that the processes have been generated up to

that time, and suppose that the next birth or death to occur happens at time ti.

Consider the candidate maximum process Y max(−M,u) and the candidate mini-

mum process Y min(−M,u) in turn and use the following rules to update both of

them, where Y (−M,u) represents whichever process we are currently considering.

If the next event is a birth in the dominating process then we accept the birth

if

P (x) ≤ γ−m(K(x)\U(Y (−M,u))

where x is the point to be born.

If, however, the next event is a death in the dominating process then we remove

97

Chapter 5. Lattice Processes

the dying point from our processes if it was there in the first place, setting

Y (−M, ti) = Y (−M,u) \ {x}.

All that now remains is to define Y (−M,u + ε) = Y (−M,u) for all ε such that

u < u+ ε < ti.

If Y max(−M, 0) = Y min(−M, 0) then we are finished. If not, we must double M

and try again, keeping the transitions of the dominating process which we have

already generated.

Intuitively appealing as this process is, it fails to generate draws from the desired

distribution. The generation of the dominating time-evolving binomial process is

correct — it does indeed produce draws from the desired distribution, but the

acceptance/rejection step to get from this to the area-interaction process is wrong.

To see the reason for this we look at a simple two point example.

5.1.2 Example: A two point model

Here we consider a two location example with parameters λ = 1 and γ = 2. The

two locations are labelled ‘1’ and ‘2’. We also assign K(x) = {0, 0} if x is either

location and there is no point there and K(x) = {1, 1} if x is either location and

there is a point there (thus U(X) = {0, 0} if there is a point at neither location

and U(X) = {1, 1} if there is a point at either location, or if there are points at

both locations). Let m be the counting measure. By simply plugging these values

into equation (5.1) we find that α = 4/7. Thus the probability distribution of this

process should be

p({0, 0}) =
4

7
; p({1, 0}) =

1

7
; p({0, 1}) =

1

7
; p({1, 1}) =

1

7
.

Since the process is generated from a binomial process we consider a model with

the nine states2 x1, . . . , x9 shown in Table 5.1.

2 Since there are in effect four locations (two in the dominating process and two
in the dominated process), and each location can be in one of two possible states we actually
have 24 = 16 different states. However due to the nature of the model there are seven states

98

5.1. Area-interaction processes on discrete space

State of State of
Dominating process Dominated process

1 2 1 2
x1 0 0 0 0
x2 1 0 0 0
x3 0 1 0 0
x4 1 1 0 0

State x5 1 0 1 0
x6 1 1 1 0
x7 0 1 0 1
x8 1 1 0 1
x9 1 1 1 1

Table 5.1: Possible states of our example process

Denote equilibrium probabilities

p(xi) = pi.

Since the birth and death rates are equal in this example, the equilibrium distri-

bution of our Markov process will be equal to the equilibrium distribution of the

jump chain of our process. This means that we can calculate that equilibrium dis-

tribution using transition probabilities rather than transition rates, which makes

the calculations conceptually slightly easier. From detailed balance we know that

p1 × p(x1, x2) = p(x2, x1)× p2,

where p(x1, x2) and p(x2, x1) are the transition probabilities of the jump chain of

our Markov process. Now p(x1, x2) = 1
2
× (1−γ−m(K(x)\U(Y (−T,u)))) and p(x2, x1) =

1
2
, so we have

3

8
p1 =

1

2
p2.

Similar analysis leads to equations relating the other states, which can be solved

(together with the equation
∑9

i=1 pi = 1) to give the following probability distri-

bution:

(such as there being no points in the dominating process but points at both locations in the
dominated process) which have by definition zero probability of happening. Due to this fact we
only considered the other nine states.

99

Chapter 5. Lattice Processes

State x1 x2 x3 x4 x5 x6 x7 x8 x9

Probability 16
67

12
67

12
67

9
67

4
67

3
67

4
67

3
67

4
67

.

By summing components this gives

p({0, 0}) =
49

67
; p({1, 0}) =

7

67
; p({0, 1}) =

7

67
; p({1, 1}) =

4

67
,

which is clearly not the desired distribution.

This raises the obvious question of why the methodology does not work when

discretized in this way. Although it has been easier to show that the equilibrium

probabilities are incorrect using transition probabilities, it is easier to see why they

are incorrect by once more considering transition rates. Consider state x2, where

the dominating process has a point at location 1 but the dominated process does

not. Consider also that the transition rate of the dominated process should be the

same as that of the true process (as it should in all states). Thus we should have

qdesired({0, 0}, {1, 0}) = λγ−m(K(x)\U(Y (−M,u))).

However, since the dominating process is in state {1, 0}, the transition rate is

actually

qactual({0, 0}, {1, 0}) = (1 + λ)γ−m(K(x)\U(Y (−M,u))),

since we can only move to state x5 via state x1. This obviously leads to smaller

probabilities that there are points at the locations on the grid, as we saw above.

In an attempt to overcome the difficulties encountered by attempting to domi-

nate the discretized area-interaction process with a binomial process, we now define

a new process which may have multiple points at each location.

5.2 A Poisson process on a finite discrete space

Let χ be a finite grid (or lattice) of locations. The discrete Poisson process with

rate λ is simply a random configuration of points over χ such that each location

has a Poisson(λ) number of points, independently of the other locations. This is

100

5.2. A Poisson process on a finite discrete space

a simplified version of what is more commonly known as the auto-Poisson model.

See Cressie (1993) for details. We call this model a discrete Poisson process be-

cause it can be viewed as a ‘windowing’ of a continuous Poisson process, with the

number of points at a given location equal to the number of points in the win-

dow corresponding to that location. It should be noted that since we now allow

multiple points at each location this is no longer a Markov connected component

field.

If we are to use this in dominated CFTP we must have a method for evolving

the process through time. Using the notation of Section 5.1.1, we again let r and

s be two different configurations of points, this time with the possibility of having

multiple points at single locations. Again, s has one more point in it than r at

some location x and is otherwise identical. Clearly

π(s) =
n∏

i=1

p(sxi
)

and

π(r) =
n∏

i=1

p(rxi
),

where again x1, . . . , xn are the locations in χ, and sxi
and rxi

are the states of

location xi under s and r respectively. Our initial definitions of r and s again

enable us to simplify the above equations to

π(s) = e−λ λ
Ns(x)

Ns(x)!

∏
xi 6=x

p(sxi
)

and

π(r) = e−λ λNs(x)−1

(Ns(x)− 1)!

∏
xi 6=x

p(sxi
),

where Ns(x) is the number of points at location x under configuration s. Appealing

once more to the detailed balance equation (4.4), we see once more that

q(r, s)

q(s, r)
=

e−λ λNs(x)

Ns(x)!

∏
xi 6=x p(sxi

)

e−λ λNs(x)−1

(Ns(x)−1)!

∏
xi 6=x p(sxi

)
=

λ

Ns(x)
.

Thus by basic theory it is possible to simulate a time-evolving version of this

process using a birth-death process with each location having a birth rate of λ and

101

Chapter 5. Lattice Processes

each point having a death rate of one. Readers familiar with queueing theory will

recognise this as a collection of independent (M,M,∞) queues.

We now extend the attractive-repulsive process defined in Section 4.4 to discrete

space and use the discrete Poisson process to enable us to perfectly simulate the

new model.

5.3 The attractive-repulsive process on discrete

space

Let d(X) be the number of locations in a configuration X with at least one point,

and N(X) be the number of points in X including multiplicity. For this model let

p(X) = αλN(X)γ
−m(U(X))
1 γ

−m(X⊕G)
2 (5.5)

with respect to the unit rate discrete Poisson process3, where we take G sufficiently

small so that (x⊕G) is simply {x} in this discrete setting. We return once more

to the notation U(X) for the exponent of γ1 as we did when describing the discrete

area-interaction process on page 93, and note that if there are multiple points at

a given location then U(X) is no different than if there were only a single point

there. As before m is counting measure. With G as above we see that

γ
−m(X⊕G)
2 = γ

−d(X)
2 ,

and letting N∗(X) = N(X)− d(X), equation (5.5) becomes

p(X) = α

(
λ

γ2

)N(X)

γ
−m(U(X))
1 γ

N∗(X)
2 . (5.6)

3 This is a slight departure from the way we have previously defined discrete dis-
tributions. In the past all definitions have been probability mass functions — i.e. they have
been stated with respect to some suitable counting measure (see Sections 2.2 and 2.4 for a brief
discussion of what it means to define a probability measure with respect to some other measure).
Equation (5.5) can also be written in this form as follows:

p(X) = α

(
n∏

i=1

λN(xi)

N(xi)!

)
γ
−m(U(X))
1 γ

−m(X⊕G)
2 = αλN(X)γ

−m(U(X))
1 γ

−m(X⊕G)
2

n∏
i=1

1
N(xi)!

.

The reader should note how little clarity is added by doing so.

102

5.3. The attractive-repulsive process on discrete space

This model is not a Markov connected component field as it allows multiple in-

stances of a single point.

5.3.1 Simulation

Perfect simulation of the above process is actually simpler than the method for

simulating the point process version of the attractive-repulsive process. We begin

by noting that the discrete Poisson process with rate

λ

γ2

dominates (5.6). Thus we begin by simulating a discrete Poisson process with rate

λ/γ2 as discussed in Section 5.2 and use this as our configuration at time 0. We

then continue with the methods discussed in that section to evolve the process

backwards until some time −M using a birth-death process with death rate equal

to 1. For consistency of notation, again let Z(t) denote the configuration of points

in this process at time t. Just as in the standard area-interaction process algorithm

we then give all the points that exist in the model in the interval [−M, 0] marks

generated from a U [0, 1] distribution. Next we recursively define two new processes

Y max and Y min just as in Section 4.4.1 but with a few minor adjustments:

We begin by defining the configurations at time −M :

Y max(−M,−M) = {x : x ∈ Z(−M)}

Y min(−M,−M) =
{
x : x ∈ Z(−M) and P (x) ≤ γ

−M(χ)
1 γ2

}
(5.7)

where P (x) is the U [0, 1] mark given to the point x and

M(χ) = max
χ

(m(K(x)))

as on page 97 in Section 5.1.1.

By examining the detailed balance equation (4.4) we see that that the birth rate

of our process should be

q(X,X ∪ {x}) =
λ

γ2

γ
−m(K(x)\U(X))
1 γ

N∗(X∪{x})−N∗(X)
2 ,

103

Chapter 5. Lattice Processes

where X is the state of the process prior to a birth and x is a new point being

born. Since we are simulating this process with respect to a Poisson process with

rate λ/γ2 this means that as we simulate the maximum and minimum processes

forwards in time we should accept births if

P (x) ≤ γ
−m(K(x)\U(X))
1 γ

N∗(X∪{x})−N∗(X)
2 . (5.8)

We may now see that the bound on P (x) given in (5.7) is correct, as it is the

minimum of equation (5.8). Unlike the point process version of the attractive-

repulsive process, using (5.8) as the acceptance probability does not break the

monotonicity of the process. Having discussed the birth-behaviour of our process

in some detail, we proceed by spelling out the algorithm as a whole.

The processes are generated forwards in time to time t = 0 in the following way:

At each time u in [−M, 0] assume that the processes have been generated up to

that time, and suppose that the next birth or death to occur happens at time ti.

If the next event is a birth, then we accept the birth for our Y processes if

P (x) ≤ γ−m(K(x)\U(Y (−M,u)))γ
N∗(Y (−M,u)∪{x})−N∗(Y (−M,u))
2

where x is the point to be born and Y is either Y max or Y min depending upon

which process we are generating.

If, however, the next event is a death, then we remove the dying point from

our processes (if it was actually in either process), setting

Y (−M, ti) = Y (−M,u) \ {x}.

All that now remains is to define Y (−M,u+ ε) = Y (−M,u) for u < u+ ε < ti.

If these two processes are identical at time zero (i.e. if Y max(−M, 0) =

Y min(−M, 0)), then we have the required sample from the discretized attractive-

repulsive process. If not we extend the underlying Poisson process back in time

to time −(M + S), generate a few more U [0, 1] marks (keeping the ones already

generated), and start again generating the processes forwards to time t = 0 again.

104

5.4. Perfect simulation of a discrete AIP revisited

The same reasoning which led us to see that the algorithm in Section 4.1.4

correctly simulated the desired distribution also applies to this new process, since

the true process will again be sandwiched in between the maximum and minimum

processes.

In the next section we show how an extension of this model leads to another

attempt at perfectly simulating the discrete area-interaction process.

5.4 Perfect simulation of a discrete area-

interaction process revisited

Here we present a second attempt at perfectly simulating a discretized area-

interaction process which exemplifies the second way in which perfect simulation

can fail when using dominated CFTP.

We begin by modifying the attractive/repulsive process so that the density is

p(X) = αλ
N(X)
1 γ−m(U(X))γ

−m2(X)
2 (5.9)

with respect to the unit rate discrete Poisson process, where

m2(X) = N(X) if N(X) = d(X)

= ∞ if N(X) > d(X)

and γ2 ∈ (1,∞). We see that m2 is a measure since it is clearly additive and we

also see that it is dominated by the discrete Poisson process with density

p(X) = α

(
λ1

γ2

)N(X)

(5.10)

with respect to the unit rate discrete Poisson process.

Clearly the density (5.9) is equivalent to the discretized area-interaction process,

since it gives zero probability to configurations with more than one instance of a

given point and is otherwise identical (except for the rate being λ1/γ2, which can

be corrected by scaling λ1 prior to simulation). It may also be amenable to perfect

simulation, since the discrete Poisson process (5.10) allowing multiple instances of

a point may be used as a dominating process.

105

Chapter 5. Lattice Processes

To see this we examine the detailed balance equation

π(r)q(r, s) = π(s)q(s, r)

with s = r ∪ {p} for p a point at some location x on our grid. These values for r

and s mean that q(r, s) is the birth rate at location x and q(s, r) is the death rate

(= Ns(x)) there. Thus we have

αλ
N(r)
1 γ−m(U(r))γ

−m2(r)
2 q(r, s) = q(s, r)αλ

N(s)
1 γ−m(U(s))γ

−m2(s)
2

=⇒ λ
N(r)
1 γ−m(U(r))γ

−N(r)
2 q(r, s) = Ns(x))λ

N(r)+1
1 γ−m(U(s))γ

−m2(s)
2

=⇒ q(r, s) = Ns(x)λ1γ
−m(K(p)\U(r))γ

−m2(s)
2

γ
−N(r)
2

.

Now if Nr(x) = 0 then γ
−m2(s)
2 = γ

−(N(r)+1)
2 and Ns(x) = 1, so

q(r, s) =
λ1

γ2

γ−m(K(p)\U(r)).

If Nr(x) > 0 then γ
−m2(s)
2 = γ−∞2 = γ

−(N(r)+1)
2 γ−∞2 and so

q(r, s) = Ns(x)
λ1

γ2

γ−m(K(p)\U(r))γ−∞2 = 0.

Thus

q(r, s) =
λ1

γ2

γ−m(K(p)\U(r))γ
−m3({p}\r)
2

where

m3(X) = 0 if X 6= φ

= ∞ if X = φ.

Making continued use of the terminology discussed on page 96, our next attempt

at perfect simulation of the discretized area-interaction process is as follows:

1. For each location i in turn:

(a) Generate a Poisson(λ) random variable. This is the number of points

in the dominating process which are alive at location i at time 0.

(b) For each of these points generate an Exponential(1) random variable.

This is the lifetime of the point. If any of these values is greater than

M then there is zero probability of coalescence, so return to the start

(point 1), double M and try again.

106

5.4. Perfect simulation of a discrete AIP revisited

(c) Beginning at time t = 0 generate:

i. An Exponential(λ) random variable and add this to t. This is −1

times the death time of a point.

ii. An Exponential(1) random variable. Subtracting this from the

death time gives the birth time of the point whose death time we

just found.

This should be repeated until either t > M or the birth time of a point

is less than −M .

(d) If we stopped because of a birth time being less than −M then the

death time of this point should be stored as the first event to happen at

location i and the candidate maximum process should be given a value

of 1 (alive) at that location at time −M .

(e) If we stopped because t > M then the smallest birth time after −M

is the first event to happen at location i. The fact that t > M means

that the point which we have just considered died before time −M and

is thus not part of the process we are simulating. If there is no birth

time after −M then use zero as the next birth time. The candidate

maximum process should be given the value ‘0’ (dead) at location i at

time −M .

(f) Set the candidate minimum process to 0 (dead) at location i at time

−M .

2. Initialise U(X) for the candidate maximum process using the values of the

candidate maximum process at time −M and set it to the empty set for the

candidate minimum process.

3. Sort the ‘next event’ times for each location (at this stage these are obviously

the ‘first event’ times).

4. Repeat:

107

Chapter 5. Lattice Processes

(a) If the next event is a death at location j, set both processes to 0 (dead)

at that location, update U(X) for both processes and find the next

birth (if there is one) which happens at location j. Set that as the next

event to happen at that location.

(b) Otherwise (a birth) calculate γ−m(K(p)\U(X)) for each process (where p

is the point being born) and use the point’s mark to decide whether to

allow the birth. If we reject the birth from the max process then let

the next event at that location be the next birth which happens there

(if there is one). If we accept the point in the max process then let the

next event at that location be the death of that point.

(c) Insert the next event time we have just calculated in the correct place

in the sorted list of next events.

Until we have dealt with all events at all locations.

5. If max and min processes are the same we have our perfect draw. Otherwise

double M and return to the start (step 1).

5.4.1 Example revisited: The two point model

Returning to the example of Section 5.1.2 we treat the general case this time with

the minor alteration that we let λ be the ratio of λ1/γ2 due to our new simulation

method. We see that the single-step transition probabilities are now independent

of the state of the dominating process, as points in that process can be born

regardless of whether there is a point there already. From the definition of the

process we see that

p({0, 0}) = αλ0γ−0 = α,

p({1, 0}) = αλ1γ−2,

p({0, 1}) = αλ1γ−2 and

p({1, 1}) = αλ2γ−2,

108

5.4. Perfect simulation of a discrete AIP revisited

which combined with the normalisation equation p({0, 0})+p({1, 0})+p({0, 1})+

p({1, 1}) = 1 give

α =
γ2

λ2 + 2λ+ γ2
.

Therefore the equilibrium probabilities are

p({0, 0}) =
γ2

λ2 + 2λ+ γ2
, p({1, 0}) =

λ

λ2 + 2λ+ γ2
,

p({0, 1}) =
λ

λ2 + 2λ+ γ2
p({1, 1}) =

λ2

λ2 + 2λ+ γ2
.

It is easy to see that the at a given instant in time the probability that the next

event to occur in the dominating process is a birth is given by

p(next event is birth) =
birth rate

birth rate + death rate
=

λ

1 + λ
.

This clearly gives

p(next event is birth at point p) =
λ

1 + λ
× 1

of points in grid

and since our model has two points this reduces to

p(next event is birth at point p) =
λ

1 + λ
× 1

2
.

An analogous argument shows that

p(next event is death at point p) =
1

1 + λ
× 1

2
.

From these equations and detailed balance it is easy to see that

p({0, 0}) · λ · 1

γ2
= p({1, 0}),

p({0, 0}) · λ · 1

γ2
= p({0, 1}) and

p({1, 0}) · λ · 1 = p({1, 1}).

Combining these equations with the normalisation equation gives

p({0, 0}) =
γ2

λ2 + 2λ+ γ2
, p({1, 0}) =

λ

λ2 + 2λ+ γ2
,

p){0, 1}) =
λ

λ2 + 2λ+ γ2
, p({1, 1}) =

λ2

λ2 + 2λ+ γ2

as required. Thus the stationary distribution of the candidate maximum and

candidate minimum processes is indeed the discretized area-interaction process.

109

Chapter 5. Lattice Processes

5.4.2 What goes wrong

This now looks very promising, as we have a method for generating candidate

minimum and candidate maximum processes whose stationary distribution is the

discretized area-interaction process. Unfortunately this algorithm is also flawed.

The reason for this comes back to the idea of stochastic domination, and is the same

reason that the algorithm for sampling the attractive-repulsive process needed to

be modified.

Recall from Section 4.1.4 that the reason that coupling from the past could

be applied was that the maximum process dominated the true process and the

minimum process was dominated by the true process. This meant that when the

maximum and minimum processes were equal they were also equal to the true

process. This is what fails for the candidate maximum and candidate minimum

processes in our second algorithm, and we can see this most clearly by looking

once again at our example.

5.4.3 Example revisited again

To see this we examine the case where the dominating process is in state {1, 1}

at time −M (or in any state with at least one point at each location). Then the

candidate maximum process will be in state {1, 1} at time −M and the candidate

minimum process will be in state {0, 0}. Now the ‘real’ process (the discretized

area-interaction process) could be in any of the four possible states at this point.

Now suppose that the ‘real’ process was originally in state {0, 0} and that there is

a birth between time −M and the first death time of any of the points which are

alive in the dominating process at time −M . Then there is a non-zero probability

that the ‘real’ process will no longer be between the candidate minimum and

candidate maximum processes before the first transition of either process has even

taken place! This is because there will be a point alive in the ‘real’ process (the one

which has just been born) which is not alive in the candidate maximum process.

110

5.5. A correct algorithm

This clearly breaks the stochastic domination.

We now introduce a method which overcomes the difficulties highlighted in Sec-

tions 5.1 and 5.4.

5.5 A correct algorithm

A careful examination of the algorithm for simulating draws from the attractive-

repulsive process (see Section 4.4.1) reveals a solution to the problems encountered

above. First, we must allow multiple points to exist at a single location in the

candidate maximum process and let the configuration of this process at time −M

be equal to the configuration of the dominating process. Second, we must allow

points to be born in the candidate maximum and candidate minimum processes at

any time where there is a birth in the dominating process. Third, the acceptance

probability for births in the candidate maximum process should be

P (x) ≤ γ−m(K(x)\U(Xmax))γ
−m3({x}\Xmin)
2 ,

while the acceptance probability for births in the candidate minimum process

should be

P (x) ≤ γ−m(K(x)\U(Xmin))γ
−m3({x}\Xmax)
2 .

Making these three changes restores the monotonicity at the expense of making

the convergence times extremely long — it makes the probability of accepting a

birth in the candidate minimum process zero whenever there is a point alive in the

candidate maximum process. This means that a lower bound on the coalescence

time is the time taken for the number of points in the candidate maximum process

to reach zero at every location (although not necessarily at the same time). An

upper bound is the time taken for there to be no live points anywhere in the

candidate maximum process.

111

Chapter 5. Lattice Processes

5.6 Conclusions

We have introduced some discrete analogues of the spatial point process models

of Chapter 4 and shown how to simulate these models using dominated coupling

from the past. We have also highlighted some of the important issues which require

consideration when using dominated coupling from the past, giving examples to

show how things go wrong if these issues are not considered.

In the following chapter, we use a discrete area-interaction process to model the

distribution of significant wavelet coefficients. In this application we decided to

drop the requirement that there should be a maximum of one point per location.

Instead, we use the model whose density is given by

p(X) = αλN(X)γ−m(U(X))

with respect to the discrete Poisson process introduced in Section 5.2. This gives

both faster convergence times and more flexible models, as it enables us to use

the number of points at a given location as a scaling parameter, as we shall see

in Chapter 6. It is easy to see how a simplification of the methods described in

Section 5.3.1 leads to perfect simulation of the above process.

112

Chapter 6

An application to wavelet
thresholding

6.1 Introduction

In this chapter we discuss wavelets and introduce an extension of Abramovich et al.

(1998)’s wavelet-based procedure for reconstructing a signal when we observe a

noisy version. We begin by introducing the continuous wavelet transform, before

moving on to the discrete wavelet transform, which will be used extensively in

this chapter. Much of this material comes from lecture notes taken from a course

given by Guy Nason at the University of Bristol in 1999 and from Abramovich

et al. (1998), who give an excellent introduction in their paper. Throughout this

chapter we retain the notation of Abramovich et al. (1998) wherever appropriate.

The continuous wavelet transform maps a function f ∈ L2(R) onto its wavelet

series representation. This is a way of expressing f in terms of a sum of scaled

and shifted versions of a single function, ψ, called the mother wavelet :

f(t) =
∑

j

∑
k

wjk

√
2jψ(2jt− k), (6.1)

where j ∈ Z is the scale and k ∈ Z is the shift. It is clear that not every choice

of ψ will generate an orthonormal basis for L2(R) when scaled and shifted in this

way. It is, however, possible to choose ψ such that ψjk(t) =
√

2jψ(2jt − k) does

indeed form an orthonormal basis of L2(R). The examples which we make use of

in this chapter are Daubechies’s least asymmetric wavelets (Daubechies 1992) and

113

Chapter 6. An application to wavelet thresholding

the Haar wavelets. The numbers wjk in equation (6.1) above are called the wavelet

coefficients of f and are given by 〈f, ψjk〉:

wjk =

∫
R
f(t)ψjk(t)dt.

In practice we do not collect data on a continuum of points, but on a discrete

grid (whose points, for the purposes of this chapter, we shall assume are equally

spaced). We also do not observe perfectly, but with noise:

yi = g(ti) + εi. (6.2)

Suppose that we observe a vector (sequence) y which has been sampled from (6.2)

at 2m = n points, where we assume that g ∈ L2(R). The discrete wavelet transform

(DWT) is best introduced in terms of low- and high-pass filters, though we shall

see that this leads to a discrete approximation of the continuous wavelet transform.

A filter, F, is defined by a sequence {fj}. Given our observed sequence y, then

F(yi) =
∑

j

fjyi+j.

Mallat (1989) developed an algorithm based on applying two filters and a deci-

mation step recursively. In this context, decimation means keeping only the even

numbered coefficients. The two filters, called “low”- and “high”-pass, recursively

separate the sequence y into smooth and detailed parts at m− 1 levels. This pro-

cess corresponds to a discretized wavelet transform of y. The relationship between

the filter coefficients and the wavelets can be found in Section 5.6 of Daubechies

(1992). The algorithm works as follows:

1. Set j = 1.

2. Repeat:

(a) Apply the low- and high- pass filters to the sequence y, obtaining two

new sequences, yd and yc respectively. Intuitively, yd will consist of how

much the sequence changes at each sampling point and yc will consist

of how much it stays the same (d =difference; c =constant).

114

6.1. Introduction

(b) Decimate both yd and yc, obtaining two new sequences, dm−j and cm−j

respectively, each of length 2m−j.

(c) Keep dm−j. These are the discrete wavelet coefficients at level m− j.

(d) Replace y by cm−1 and add one to j.

Until j = m.

This procedure is known as a multiresolution analysis, since the sequence is recur-

sively analysed at ever-coarser scales as the algorithm progresses. A key feature of

the algorithm presented by Mallat (1989) is that it is fast — for a signal of length

n, it takes only O(n) computations to perform.

Daubechies (1992) gives the filter coefficients necessary to perform this analysis

for the wavelets we used. The coefficients for the Haar wavelets are the simplest

example, and are −g1 = g2 = 1/
√

2 for the high-pass filter and h1 = h2 = 1/
√

2

for the low-pass filter.

How does this relate to the continuous wavelet transform? If we express the

filtering as a matrix, W, and concatenate the discrete wavelet coefficients into a

vector, d̂, then we may express the DWT as follows:

d̂ = Wy.

The reason for the hat (̂) is because y is observed with noise (equation (6.2)). The

coefficients will then be an estimate of the “true”, or population discrete wavelet

coefficients, d, which we would have obtained if we could have transformed the se-

quence of function values, g(ti). Returning to the question of how this corresponds

to the continuous wavelet transform, the (jk, i)th entry of W is approximately

Wjk,i

√
n ≈ ψjk(i/n) =

√
2jψ(2ji/n− k).

It is important to note that the population discrete wavelet coefficients are not

the same as the wavelet coefficients of the function, g(t), but are approximately

related by djk ≈ wjk

√
n.

115

Chapter 6. An application to wavelet thresholding

A large class of functions can be represented sparsely by taking the wavelet

transform of the given function with respect to the Daubechies or Haar bases

mentioned above. This results in the majority of the signal being concentrated

in a small number of the wavelet coefficients. In these situations a reasonable

approach to removing noise from a signal would be to simply throw away all of

the small coefficients. For Gaussian (white) noise, this scheme works because the

transform is orthogonal. A property of orthogonal transformations is that white

noise in the observations is transformed to white noise in the coefficients of the

transform. Thus, since most of the ‘true’ signal is concentrated in a few large

coefficients we will be throwing away mainly noise. This procedure of throwing

away the small values is known as thresholding, and the most simple method is to

pick a number, t, and to set all coefficients whose absolute value is smaller than t

to zero. This is known as ‘hard’ thresholding. An alternative to hard thresholding,

‘soft’ thresholding, also shrinks towards zero the coefficients which are above the

threshold, using the formula

TSOFT(d, t) = sgn(d)(|d| − t)+,

where (x)+ = xI(x > 0) is the positive part of x. Many methods exist for choosing

the value of t for both hard and soft thresholding. We now briefly describe some

of these methods.

SureShrink (Donoho and Johnstone 1995) is a method for soft thresholding

which minimises Stein’s unbiased estimate of risk (Stein 1981). A different thresh-

old is chosen for each level of the transform. The authors prove SureShrink is

near-optimal in the way that it adapts to the smoothness of the underlying func-

tion.

Cross-validation is a general method which has been used in a number of areas

of statistics. The principle is to split the data set into two pieces, a test set and a

training set. The training set is then used to to fit a model (in this case a function).

116

6.2. An Extension of Bayesian Wavelet Thresholding

The test set is then used to assess the performance of the method. Nason (1996)

suggests splitting the data into the odd- and even-numbered observations (we shall

call them the ‘odds’ and the ‘evens’). First the evens are used to get an estimator

for the function (using some threshold t) and the sum of squared errors(SSE)

between the estimate and the odds is calculated. Secondly, the odds are used to

get an estimator of the function using the same threshold t, and the SSE between

the new estimate and the evens is calculated. Finally, the combined SSE is then

minimised numerically over values of t.

False discovery rates (Benjamini and Hochberg 1995) were originally intro-

duced in the field of multiple hypothesis testing, and control the expected propor-

tion of false-positives. (Abramovich and Benjamini 1996) use this methodology to

control the expected number of coefficients which are not thresholded but should

have been.

BayesThresh (Abramovich et al. 1998) uses a Bayesian hierarchical model,

assuming independent N(0, σ2) noise. They use a mixture of a point mass at 0

and a N(0, τ 2) density as their prior on the population wavelet coefficients. The

marginal posterior median of the population wavelet coefficient is then used as

their estimate of it. This gives a thresholding rule, since the point mass at 0 in

the prior gives non-zero probability that the population wavelet coefficient will be

zero. We now discuss an extension of this method.

6.2 An Extension of Bayesian Wavelet Thresh-

olding

We describe a novel thresholding procedure which uses the discretized area-

interaction process introduced in Chapter 5 to model the correlation between

neighbouring coefficients in the wavelet transform.

The principle behind our method is to model the discrete wavelet transform as a

117

Chapter 6. An application to wavelet thresholding

marked lattice process. The ‘lattice’ is the natural binary tree which is commonly

used to represent the coefficients. A discretized area-interaction process is used as

a prior on the distribution of non-zero coefficients. We also make use of the extra

information gained by allowing multiple points to exist at a single location, using

the number of points as a shrinkage factor. This is different from Abramovich et al.

(1998), where the implicit assumption was that the configuration was Binomial

(i.e. a totally random configuration of non-zero coefficients). The reason for

thinking that the discretized area-interaction process would make a better prior

is that the wavelet transform provides time-frequency localisation. This means

that the effect of, for example, a discontinuity in the signal or in one of the first

few derivatives of the signal will produce significant coefficients of the wavelet

transform of the signal only in the coefficients close to the location at which the

discontinuity occurs. This fact means that the wavelet transform will have all its

coefficients clustered around a few locations, thus leading to a clustered rather than

uniformly random distribution of coefficients. This can be seen clearly in Figure

6.1 on page 119, which shows the discrete wavelet transform of several common

test functions represented in the natural binary tree configuration.

More formally, we begin by allowing for the presence of noise by assuming that

the true wavelet coefficients are corrupted by Gaussian noise with zero mean and

some variance σ2. This gives the following likelihood:

d̂jk|djk ∼ N(djk, σ
2),

where d̂jk is the value of the noisy wavelet coefficient (the “data”) and djk is the

value of the “true” coefficient. We then place a prior on the value of the wavelet

coefficients:

djk|J ∼ N(0, τ 2Jjk), (6.3)

where τ 2 is a constant and Jjk is the number of points at location (j, k) of a

certain lattice process J which exists on the natural binary tree commonly used to

represent wavelet coefficients. Thus the more points at a given location, the larger

118

6.2. An Extension of Bayesian Wavelet Thresholding

Figure 6.1: Examples of the discrete wavelet transform of some test functions.
There is clear evidence of clustering in most of the graphs. The original functions
are shown above their discrete wavelet transform each time.

119

Chapter 6. An application to wavelet thresholding

the variance of the prior on djk, resulting in a higher probability of large values of

djk. Finally, we place a hyperprior on this lattice process:

P (J) = αλN(J)γ−m(U(J)) (6.4)

with respect to the unit rate discrete Poisson process introduced in Section 5.2,

where J = (Jjk) is the configuration. If we take a value of γ greater than one

this gives a clustered configuration. Thus we would expect to see clusters of large

values of djk if this were a reasonable model — which is exactly what we do see in

Figure 6.1.

This is similar to Abramovich et al. (1998), who assume that the true wavelet

coefficients are distributed as a mixture of a Normal distribution with zero mean

and variance dependent on the level of the coefficient, and a point mass at zero as

follows:

djk ∼ ζjkN(0, τ 2
j) + (1− ζjk)δ(0),

where djk is the value of the kth coefficient at level j of the discrete wavelet

transform and τj is a positive constant. Notice that (6.3) includes a point mass

at zero when Jjk = 0 (i.e. when there are no points alive at that location).

Abramovich et al. (1998) also assume that there is N(0, σ2) noise added to the

true coefficients. This is equivalent to our likelihood d̂jk|djk ∼ N(djk, σ
2).

Clearly a suitable interpretation of U(J) =
⋃

(j,k) Z(Jjk) in equation (6.4) is

required. Several possibilities spring to mind. Organising the wavelet coefficients

into the traditional binary tree layout, one possibility would be to use the parent,

children and immediate sibling and cousin of a coefficient as Z(x). Another would

be to use a variation on this taking into account the length of support of the

wavelet used. Figure 6.2 shows the scheme used in the program which we used

to implement the model (described in Section 7.1). There, we decided to use the

parent, the coefficient on the parent’s level of the transform which is next-nearest

to x, the two adjacent coefficients on the level of x, the two children and the

coefficients adjacent to them, making a total of nine coefficients (including x itself).

120

6.2. An Extension of Bayesian Wavelet Thresholding

Figure 6.2: The four plots give examples of what we used as Z(·) for four different example
locations showing how we dealt with boundaries. Grey boxes are Z(x) \ {x} for each example
location x, while x itself is shown as black.

Figure 6.2 also shows how we dealt with boundaries: we assumed that the signal we

are examining is periodic, making it natural to have periodic boundary conditions

horizontally. If Z(x) overlaps with a vertical boundary we simply discard those

parts which have no locations associated with them. The simple counting measure

used has m(K(x)) = 9 unless x is in the bottom or one of the top two rows.

As usual in the Bayesian setting, we wish to know the posterior probability of

J given a set of data d̂ = {d̂jk}:

f(J|d̂) = k × f(J)f(d̂|J)

where k is a constant of proportionality.

Switching to log-likelihoods for ease of notation this becomes

log f(J|d̂) = logα+N(J) log λ−m(U(J)) log γ + log f(d̂|J),

where we have absorbed the constant of proportionality into logα. We now exam-

ine f(d̂|J).

Let fi(x) be the normal density with zero mean and variance iτ 2. Then

f(d̂|J) =
∞∏
i=0

∏
Jjk=i

fi(d̂jk).

121

Chapter 6. An application to wavelet thresholding

Hence the log posterior probability is

log f(J|d̂) = logα+N(J) log λ−m(U(J)) log γ +
∞∑
i=0

∑
Jjk=i

log fi(d̂jk). (6.5)

Clearly this is not an ordinary area-interaction process and we must once more

extend our simulation techniques to deal with this fact.

6.3 Sampling from the posterior

Although the expression in equation (6.5) may look like a rather complicated den-

sity it turns out that it can be simulated perfectly using a rather simple extension

of the procedure for simulating the discretized area-interaction process covered in

Chapter 5.

As usual, we use a birth-death process with unit death rate. In this case the

detailed balance equation (4.4) on page 57 becomes

q(J,K) =
π(K)

π(J)
,

where J is a configuration identical to K but with one less point. Let x denote

that point. Thus from equation (6.5) we see that

q(J,K) =
αλN(K)γ−m(U(K))

∏∞
i=0

∏
Kjk=i fi(d̂jk)

αλN(J)γ−m(U(J))
∏∞

i=0

∏
Jjk=i fi(d̂jk)

= λγ−m(K(x)\U(J))fKx(d̂x)

fJx(d̂x)

= λγ−m(K(x)\U(J))

×

√
τ 2Jx + σ2

τ 2(Jx + 1) + σ2
exp

(
d̂2

xτ
2

2(τ 2Jx + σ2)(τ 2(Jx + 1) + σ2)

)
.

Since the dominating process is Poisson we can use the method introduced in

Section 5.2 to simulate the dominating process. Since we generate independent

processes at each location this enables us to use different birth rates at each loca-

tion. A suitable birth rate is then clearly

λdom
jk = λed̂2

jkτ2/2σ2(τ2+σ2) (6.6)

122

6.3. Sampling from the posterior

at each location (j, k) on the grid. The probability of accepting a birth from this

process is then

p(x) = γ−m(K(x)\U(J))

√
τ 2Jx + σ2

τ 2(Jx + 1) + σ2

× exp

(
d̂2

xτ
2

2(τ 2Jx + σ2)(τ 2(Jx + 1) + σ2)
− d̂2

xτ
2

2σ2(τ 2 + σ2)

)
,

which after some algebra becomes

p(x) = γ−m(K(x)\U(J))

√
τ 2Jx + σ2

τ 2(Jx + 1) + σ2

× exp

(
− d̂

2
xτ

2

2

τ 2Jx(τ
2(Jx + 1) + 2σ2)

σ2(τ 2 + σ2)(τ 2Jx + σ2)(τ 2(Jx + 1) + σ2)

)
. (6.7)

We recall from the work of Sections 5.1 to 5.4 that there are two important

things to consider when using dominated coupling from the past in this way:

1. Whether the birth rates of the candidate minimum and the candidate max-

imum processes are independent of the state of the dominating process.

2. Whether stochastic monotonicity holds.

Since we are using a discrete Poisson process as the dominating process we

clearly need not worry about point 1. The only problem, then, is point 2. Fortu-

nately we may again use the methods developed in Section 4.4.1, since (6.7) is a

product of monotonic functions. This enables us to restore stochastic monotonic-

ity by using different acceptance rules for the candidate maximum and candidate

minimum processes as we did for the attractive-repulsive process in Section 4.4.1.

The required probabilities are then

P (x) ≤ γ−m(K(x)\U(Jmax))

√
τ 2Jmax

x + σ2

τ 2(Jmax
x + 1) + σ2

× exp

(
− d̂

2
xτ

2

2

τ 2Jmin
x (τ 2(Jmin

x + 1) + 2σ2)

σ2(τ 2 + σ2)(τ 2Jmin
x + σ2)(τ 2(Jmin

x + 1) + σ2)

)

123

Chapter 6. An application to wavelet thresholding

for the candidate maximum process and

P (x) ≤ γ−m(K(x)\U(Jmax))

√
τ 2Jmin

x + σ2

τ 2(Jmin
x + 1) + σ2

× exp

(
− d̂

2
xτ

2

2

τ 2Jmax
x (τ 2(Jmax

x + 1) + 2σ2)

σ2(τ 2 + σ2)(τ 2Jmax
x + σ2)(τ 2(Jmax

x + 1) + σ2)

)

for the candidate minimum process. The remainder of the algorithm carries over

in the obvious way, with the initial configuration of the minimum process being

composed of those points whose marks are less than

P (x) = γ−M(χ)

√
σ2

τ 2 + σ2
× exp

(
− d̂2

xτ
2

2σ2(τ 2 + σ2)

)

where, as in Section 5.3, M(χ) = maxχ(m(K(x))). Since we have taken care to

observe stochastic monotonicity and independence from the state of the dominat-

ing process the candidate maximum and candidate minimum processes truly are

maximum and minimum processes and thus the dominated coupling from the past

algorithm goes through without a hitch.

6.4 Using the Generated Samples

Having simulated realisations of J|d̂ we must then simulate d|J, d̂ for each realisa-

tion of J generated in the first step. Taking the sample median of this distribution

gives an estimate for d, as required. The median is used instead of the mean as

this gives a thresholding rule, as discussed in Abramovich et al. (1998).

We calculate f(d|J, d̂) using logarithms for ease of notation. Assuming that

124

6.5. Examples

Jjk 6= 0 we find

log f(djk|d̂jk, Jjk 6= 0) = log f(djk) + log f(d̂jk|djk, (j, k) ∈ J) + C

=
−d2

jk

2τ 2Jjk

+
−(d̂jk − djk)

2

2σ2
+ C1

=
−d2

jkσ
2 − (d̂jk − djk)

2τ 2Jjk

2σ2τ 2Jjk

+ C1

= −
d2

jk(σ
2 + τ 2Jjk)− 2τ 2Jjkd̂jkdjk − τ 2Jjkd̂jk

2σ2τ 2Jjk

+ C1

= −
(σ2 + τ 2Jjk)

(
djk − τ2Jjkd̂jk

σ2+τ2Jjk

)2

2σ2τ 2Jjk

+ C2

where C, C1 and C2 are constants. Thus

f(djk|d̂jk, Jjk 6= 0) ∼ N

(
τ 2Jjkd̂jk

σ2 + τ 2Jjk

,
σ2τ 2Jjk

σ2 + τ 2Jjk

)
.

When Jjk = 0 we clearly have f(djk|Jjk, d̂jk) = 0.

6.5 Examples

In this section we present some results from using the program detailed in Chapter

7 to de-noise two standard test signals commonly called “jumpsine” and “heavi-

sine”. These are both sine waves with discontinuities at two points, resulting in a

piece of the sine curve being either above or below the level of the rest of the curve.

The test functions were generated using the statistics package S-Plus Wavelets.

6.5.1 Jumpsine

Figure 6.3 shows the jumpsine data set. The top picture is of the dataset with

no noise at all. In the middle picture, the dataset has been corrupted with white

noise with σ = 0.1σ0, where σ0 is the standard deviation of the signal. The bottom

picture shows the result of processing the noisy signal shown in the middle picture

using the program detailed in Chapter 7. Figure 6.4 shows the discrete wavelet

transform of the same three signals.

125

Chapter 6. An application to wavelet thresholding

0 100 200 300 400 500

−
10

−
5

0
5

10
15

20

Index

Ju
m

ps
in

e

0 100 200 300 400 500

−
10

−
5

0
5

10
15

20

Index

N
oi

sy
 ju

m
ps

in
e

0 100 200 300 400 500

−
10

−
5

0
5

10
15

20

Index

P
ro

ce
ss

ed
 n

oi
sy

 ju
m

ps
in

e

Figure 6.3: From top to bottom, the jumpsine dataset with no noise, white noise
with σ = 0.1σ0 and having been processed using our model.

126

6.5. Examples

Wavelet Decomposition Coefficients

Daub cmpct on least asymm N=10
Translate

R
es

ol
ut

io
n

Le
ve

l

8
7

6
5

4
3

2
1

0 64 128 192 256

Wavelet Decomposition Coefficients

Daub cmpct on least asymm N=10
Translate

R
es

ol
ut

io
n

Le
ve

l

8
7

6
5

4
3

2
1

0 64 128 192 256

Wavelet Decomposition Coefficients

Daub cmpct on least asymm N=10
Translate

R
es

ol
ut

io
n

Le
ve

l

8
7

6
5

4
3

2
1

0 64 128 192 256

Figure 6.4: From top to bottom, the discrete wavelet transform of the jumpsine
dataset with no noise, white noise with σ = 0.1σ0 and having been processed using
our model. Daubechies least asymmetric wavelets with n=10 were used.

127

Chapter 6. An application to wavelet thresholding

The program described in chapter 7 was used to generate 1000 realisations of

the posterior. These simulations were then used as discussed in Section 6.4. The

parameters γ and λ were set to 3.0 and 1.1 respectively and τ was set to 0.05.

The value of σ was set to the standard deviation of the noise that was added. As

can be seen the de-noising process was fairly effective, but the discontinuities have

not been dealt with as well as perhaps we could have hoped. I suspect that this

problem may be due to the approximations it was necessary to make when dealing

with the problems discussed in Section 7.1.5.

6.5.2 Heavisine

Figure 6.5 shows the heavisine data set in a similar configuration to that used for

the jumpsine dataset in Figure 6.3. The top picture is of the dataset with no noise

at all. In the middle picture, the dataset has been corrupted with white noise

with σ = 0.1σ0, where σ0 is the standard deviation of the signal. The bottom

picture shows the result of processing the noisy signal shown in the middle picture

using the program detailed in Chapter 7. Figure 6.6 shows the discrete wavelet

transform of the same three signals.

As in the case of the jumpsine dataset, the program described in chapter 7 was

used to generate 1000 realisations of the posterior. These simulations were then

used as discussed in Section 6.4. The parameters γ and λ were set to 3.0 and 0.7

respectively and τ was set to 0.15. σ was again set to the standard deviation of the

noise that was added. As can be seen the de-noising process was fairly effective,

with only a few ‘mistakes’. I feel that these were due mainly to the problems

discussed in Section 7.1.5, as it can be seen by comparing Figures 6.5 and 6.6 that

the wavelet coefficients corresponding to these parts of the signal were unusually

large, and so were probably included in the ‘always on’ list.

Figure 6.7 compares the results gained by reducing the clustering parameter γ

to 2.0. Clearly the results gained by using a larger value are superior, giving good

evidence for the merits of the added layer of complexity which our model uses over

128

6.5. Examples

0 100 200 300 400 500

−
6

−
4

−
2

0
2

4

Index

H
ea

vi
si

ne

0 100 200 300 400 500

−
6

−
4

−
2

0
2

4

Index

N
oi

sy
 h

ea
vi

si
ne

0 100 200 300 400 500

−
6

−
4

−
2

0
2

4

Index

P
ro

ce
ss

ed
 n

oi
sy

 h
ea

vi
si

ne

Figure 6.5: From top to bottom, the heavisine dataset with no noise, white noise
with σ = 0.1σ0 and having been processed using our model.

129

Chapter 6. An application to wavelet thresholding

Wavelet Decomposition Coefficients

Daub cmpct on least asymm N=10
Translate

R
es

ol
ut

io
n

Le
ve

l

8
7

6
5

4
3

2
1

0 64 128 192 256

Wavelet Decomposition Coefficients

Daub cmpct on least asymm N=10
Translate

R
es

ol
ut

io
n

Le
ve

l

8
7

6
5

4
3

2
1

0 64 128 192 256

Wavelet Decomposition Coefficients

Daub cmpct on least asymm N=10
Translate

R
es

ol
ut

io
n

Le
ve

l

8
7

6
5

4
3

2
1

0 64 128 192 256

Figure 6.6: From top to bottom, the discrete wavelet transform of the heavisine
dataset with no noise, white noise with σ = 0.1σ0 and having been processed using
our model. Daubechies least asymmetric wavelets with n=10 were used.

130

6.6. Simulation Study

traditional Bayesian wavelet thresholding.

6.6 Simulation Study

We now present a more careful simulation study of the performance of our estima-

tor relative to several established Wavelet-based estimators. Similar to the study

of Abramovich et al. (1998), we investigate the performance of our method on

the four standard test functions of Donoho and Johnstone (1994, 1995), namely

“Blocks”, “Bumps”, “Doppler” and “Heavisine”. These test functions are used be-

cause they exhibit different kinds behaviour typical of signals arising in a variety

of applications.

The test functions were simulated at 256 points equally spaced on the unit

interval. The test signals were centred and scaled so as to have mean value 0

and standard deviation 1. We then added independent N(0, σ2) noise to each of

the functions, where σ was taken as 1/10, 1/7 and 1/3. The noise levels then

correspond to root signal-to-noise ratios (RSNR) of 10, 7 and 3 respectively. We

performed 25 replications. For our method, we simulated 25 independent draws

from the posterior distribution of the djk’s and used the sample median as our

estimate, as this gives a thresholding rule. For each of the runs, σ was set to the

standard deviation of the noise we added, τ was set to 1.0, λ was set to 0.05 and

γ was set to 3.0.

The values of parameters σ and τ were set to the true values of the standard

deviation of the noise and the signal, respectively. In practice it would be necessary

to develop some method for estimating these values. The value of λ was chosen to

be 0.05 because it was felt that not many of the coefficients would be significant.

The value of γ was chosen based on the small trials for the heavisine and jumpsine

datasets presented in Section 6.5.

We compare our method with several established wavelet-based estimators for

reconstructing noisy signals: ordinary BayesThresh (Abramovich et al. 1998),

131

Chapter 6. An application to wavelet thresholding

0 100 200 300 400 500

−
6

−
4

−
2

0
2

4

Index

H
ea

vi
si

ne

0 100 200 300 400 500

−
6

−
4

−
2

0
2

4

Index

P
ro

ce
ss

ed
 n

oi
sy

 h
ea

vi
si

ne
 1

0 100 200 300 400 500

−
6

−
4

−
2

0
2

4

Index

P
ro

ce
ss

ed
 n

oi
sy

 h
ea

vi
si

ne
 2

Figure 6.7: The heavisine dataset. At the top we have the original signal, in the
middle we have performed our simulations with γ = 2.0 and at the bottom, with
γ = 3.0. Clearly the latter is a superior result.

132

6.6. Simulation Study

Method RSNR AMSEs for the following test functions:
Blocks Bumps Doppler Heavisine

10 0.0025 0.0084 0.0049 0.0032
LatticeBayesThresh 7 0.0056 0.0185 0.0087 0.0052

3 0.0534 0.1023 0.0448 0.0149
10 0.0344 0.1651 0.0167 0.0035

BayesThresh 7 0.0414 0.1716 0.0225 0.0057
3 0.0860 0.2015 0.0448 0.0140
10 0.0055 0.0392 0.0112 0.0030

Cross-validation 7 0.0096 0.0441 0.0135 0.0054
3 0.0452 0.0914 0.0375 0.0057
10 0.0049 0.0131 0.0054 0.0065

SureShrink 7 0.0098 0.0253 0.0099 0.0093
3 0.0482 0.0973 0.0399 0.0147
10 0.0159 0.0449 0.0144 0.0064

False discovery rate 7 0.0294 0.0758 0.0253 0.0093
3 0.1230 0.2324 0.0861 0.0148

Table 6.1: Average mean-square errors for our estimator (labelled LatticeBayesThresh),
ordinary BayesThresh, cross-validation, SureShrink and false discovery rate estimators
for four test functions for two values of the root signal-to-noise ratio. Averages are based
on 25 replicates.

SureShrink (Donoho and Johnstone 1994), cross-validation (Nason 1996) and the

false discovery rate (Abramovich and Benjamini 1996). For test signals “Bumps”,

“Doppler” and “Heavisine” we used Daubechies least asymmetric wavelet of order

10 (Daubechies 1992). For “Blocks” we used the Haar wavelet, as the original signal

was piecewise constant. The analysis was carried out using the R statistical pack-

age. Guy Nason’s WaveThresh package was used to perform the discrete wavelet

transform and also to compute the BayesThresh, SureShrink, cross-validation and

false discovery rate estimators.

The goodness of fit of each estimator was measured by its average mean-square

error (AMSE) over the 25 replications. Table 6.1 presents the results. It is clear

that our estimator struggles when there is a small signal-to-noise ratio but performs

extremely well with respect to the other estimators when the signal-to-noise ratio

is larger. I feel that the results would have been even better if it had not been

133

Chapter 6. An application to wavelet thresholding

necessary to make the approximations which are described in Section 7.1.5 of

Chapter 7.

6.7 Future Work

We have introduced a procedure for Bayesian wavelet thresholding which uses

the naturally clustered nature of the wavelet transform when deciding how much

weight to give coefficient values. We have demonstrated at least in principle that

this procedure works, though the implementation suffered from some problems

which made exact computation infeasible. The performance seems good for mod-

erate and low noise levels, though it was a little disappointing for higher noise

levels.

One possible area for future work would be to replace equation (6.3) with

djk|J ∼ N(0, τ 2(Jjk)
z),

where z would be a further parameter. This would modify the number of points

which are likely to be alive at any given location and thus also modify the tail

behaviour of the prior. The idea behind this suggestion is that when we know

that the behaviour of the data is either heavy or light tailed, we could adjust z

to compensate. This could possibly also help speed up convergence by reducing

the number of points at locations with large values of djk. As inclusion of this

extra parameter requires only minor modifications, the implementation discussed

in Section 7.1 actually includes this option. The results presented in Sections 6.5

and 6.6 were generated by simply setting z = 1.

A second possible area for future work would be to develop some automatic

methods for choosing the parameter values, perhaps using the method of maximum

pseudo-likelihood introduced for the spatial case in Section 4.3.2, which was in fact

originally developed for lattice models.

134

Chapter 7

Implementational issues

The simulations outlined in Sections 6.3 and 4.4.1 were carried out in the C pro-

gramming language under Linux on a dual Pentium III 1000MHz computer. The

reason C was chosen rather than a statistical language such as S was due to the

computational effort involved in these simulations. The algorithm described in

Section 6.3 was initially written in S for a simple case, but even in this simple case

it took around 30 minutes to generate a single draw. Having now implemented

the general case in C it now takes around 30 minutes to generate around 500

independent draws for a process with 1023 locations.1

Several important issues arose during implementation. In this chapter we discuss

those issues. The program itself is discussed more fully in appendix A.

In some ways, the implementation of the algorithm given in Section 6.3 is simpler

than the implementation of the algorithm given in Section 4.4.1. For this reason we

begin by discussing those issues which arose while implementing the former. We

then move on to the implementation of the algorithm given in Section 4.4.1. Due

to the similarities between the underlying algorithms for these two models, many

of the issues which arose while implementing the first algorithm came up again

while implementing the second. Thus the material in Section 7.2 relies heavily on

the material of Section 7.1, and should not be read without it.

1 The term ‘location’ in its present context is defined in Section 5.1. Throughout
Section 7.1 we use the notation introduced in Sections 5.1 and 5.4 on pages 92 and 96 respectively.
Throughout Section 7.2 we use the notation introduced in Section 4.1 on page 50.

135

Chapter 7. Implementational issues

7.1 Bayesian Wavelet Thresholding

We begin by discussing those issues concerning the tracking of points in the dom-

inating process and related to that, the use of suitable sequences of random num-

bers. We then discuss some approximations which were made to ensure that the

program converged in a reasonable amount of time.

7.1.1 Random Number Generators

During implementation three separate pseudo random number generators were

used to ensure that the simulations were correct.2 These three sources were:

1. Seeds for individual independent draws.

2. Seeds for each location in the process.

3. Birth and death times and marks.

All of the generators used in the implementation are linear congruential pseudo

random number generators. These generate a sequence of numbers X1, . . . , Xn

using the recurrence relation

Xm+1 = (AXm + C) mod p. (7.1)

To generate sequence of U [0, 1] random numbers, U1, . . . , Un, we take

Um =
Xm

p
.

For a complete review of these and many other types of pseudo random number

generators see Knuth (1998a). Briefly, there are various important criteria for a

good linear congruential pseudo random number generator which help to determine

what the values of A, C and p should be, including the fact that A and p should

be coprime and the rather obvious requirement that p be fairly large.

2 It was not strictly necessary to use three separate random number generators,
but this was the method of ensuring correctness which seemed most obvious to the author. Other
solutions to the same problems also exist.

136

7.1. Bayesian Wavelet Thresholding

The most important fact about these pseudo random number generators from

our point of view is that given a starting value (seed) X0 the sequence generated by

a particular choice of A, C and p is entirely deterministic. This means that as long

as we store the value of the seed, we can generate the exact same sequence again

if we need to. As we will see later on, this feature is crucial to the implementation

of our algorithm.

We now return to discussion of the specific pseudo random number generators

used in our program and the reasons they were necessary.

7.1.2 Seeds for different draws

Each time the program is run it requires several inputs. These are:

1. The data.

2. The parameter values.

3. Two seeds.

Here we discuss the third.

The reason we must have a separate pseudo random number generator for this

is as follows: If we were to use one of the generators which uses the seeds passed

to the program to generate the seeds themselves then (for example) the third

random number generated in the first implementation of the program would be

exactly the same as the first generated in the second implementation which would

be exactly the same as the first seed passed to the third implementation. In

general, the nth number generated in the first implementation would be the same

as the (n − 2(m − 1))th generated in the mth implementation. This obviously

violates the independence of the draws. Thus when we are looking for a series of

independent draws we must use a different random number generator to generate

seeds for these draws than the one which uses these seeds within the program.

The linear congruential pseudo random number generator used here has param-

eters A = 48271, C = 0 and p = 2147483647 (= 231 − 1).

137

Chapter 7. Implementational issues

7.1.3 Seeds for each location

From the example in Section 3.2.2 we recall that if coalescence has not occurred at

time 0 then we double the value of−M and try again keeping the transitions already

generated. It is easy to see that if we did not do this we would be introducing bias

into our sample. In order to do this in our simulation we have two options. The

first is to actually store the random numbers generated at each stage. This would

require a large amount of memory and the program would be continually reading

in from and writing out to memory (which is a very time consuming process). The

other alternative is to simply store the values of the seeds used to generate these

random numbers and generate the entire sequence again whenever necessary. This

is also a very time consuming process and would require great care to ensure each

time that things were generated in the right order so as to maintain the integrity

of the whole thing.

In an attempt to lessen the overheads from both of these options a compromise

was implemented. Using a second pseudo random number generator two seeds

were generated for each location — one which was used to generate the marks

when points were born (which we shall refer to as the markseeds) and one to gen-

erate the sequence of birth/death times (which we shall refer to as the timeseeds).

These seeds were stored so as to reduce the overheads both from storing the entire

sequence of births, deaths and marks and to reduce the overheads from having to

generate the entire sequence of random numbers each time we want to find out

what happens next. In addition to these the death times of each point currently

alive (in the maximum or minimum processes) were stored, as was the birthtime,

deathtime and mark of the next point to be born (in the dominating process —

it may not actually be born in either the maximum or minimum process) at each

location. This data means that each time a point dies we need not re-generate any

events. Each time a point is born we need only re-generate the sequence of events

at that single location to find the birthtime, deathtime and mark of the next point

138

7.1. Bayesian Wavelet Thresholding

to be born (in the dominating process) at that location.

The reason a second pseudo random number generator was used is similar to the

reasons given in the previous section. If we used the same one as was used for the

events (see Section 7.1.4) then the random number generated for the first event of

the first location would be the same as that generated for the seed of the second

location and so on. Reasons for not using the same generator as was used for the

seeds input to the program are given in the previous section. The seeds used by

this generator were those passed to the program (again, see previous section). The

first was used to generate the markseeds and the second was used to generate the

timeseeds.

The linear congruential pseudo random number generator used here has param-

eters A = 1664525, C = 1013904223 and p = 4294967296 (= 232). This is a faster

pseudo random number generator than that used for different draws, as the mod-

ulus used is the length of an unsigned long integer. Thus we need only do x=a*x+c

and the modulus takes care of itself.

7.1.4 Birth and death times and marks

From the timeseed of each location a third random number generator is used to

determine the birth and death times for each location. It is also used to generate

a mark from a location’s markseed each time that a point is born. These are the

marks discussed in Section 4.1.4.

The linear congruential pseudo random number generator used here has param-

eters A = 2650845021, C = 0 and p = 4294967296 (= 232) and is even faster than

the last one, as we do not need to add a constant after multiplication. The value

of A was found in an exhaustive search for the best multiplier to use with the

modulus 232 by L.C. Killingbeck3.

The first and third pseudo random number generators above were taken from

3 Cited in errata to Knuth (1998a) available from
http://www-cs-faculty.stanford.edu/~knuth/taocp.html

139

Chapter 7. Implementational issues

those recommended in Knuth (1998a). The second was taken from Press et al.

(1993).

7.1.5 Dealing with large and small rates

The second problem we encountered when attempting to implement the algorithm

in Section 6.3 was that of extremely high birth rates. Recall from Equation 6.6

that if the maximum data value djk is twenty times larger in magnitude than the

standard deviation of the noise (a not uncommon event for reasonable noise levels)

then we have

λdom = λe400σ2τ2/2σ2(τ2+σ2)

= λe200τ2/(τ2+σ2).

Now unless τ is significantly smaller than σ, this will result in enormous birth

rates. We are clearly not going to be able to simulate this efficiently.

To get around this problem we reasoned that the chances of there being no

live points at a location whose data value is large (resulting in a value of λdom

larger than e4) is sufficiently small that for the purposes of calculating m((x⊕G) \

(Y (−M,u)⊕G)) for nearby locations it could be assumed that the number of

points alive was strictly positive. This allows us to simulate the process accurately

for the locations of interest and provide a reasonable level of discrimination in a

more reasonable time frame.

Unfortunately, the problems do not stop there. Recall from Section 6.4 that

djk|Jjk, d̂jk ∼ N

(
τ 2Jjkd̂jk

σ2 + τ 2Jjk

,
σ2τ 2Jjk

σ2 + τ 2Jjk

)
so that we need values of Jjk for each location (j, k) in the configuration. Unfor-

tunately, we no longer know the value of Jjk for those locations which have large

values of djk.

To get around this problem we first notice that

τ 2Jjkd̂jk

σ2 + τ 2Jjk

−−→
Jjk→∞

d̂jk

140

7.2. The Attractive-Repulsive Process

monotonically from below, and that

τ 2Jjkσ
2

σ2 + τ 2Jjk

−−→
Jjk→∞

σ2,

also monotonically from below. Since σ is typically small, convergence is very fast

indeed. Taking τ = σ as an example we see that even when Jjk = 5 we have

τ 2Jjkd̂jk

σ2 + τ 2Jjk

=
5

6
d̂jk

and

τ 2Jjkσ
2

σ2 + τ 2Jjk

=
5

6
σ2.

We see that we are already within 1
6

of the limit. Convergence is even faster for

larger values of τ .

We also recall that the dominating process gives an upper bound for the value of

Jjk at every location. Thus a good estimate for djk would be gained by taking the

value of Jjk in the dominating process for those points where we do not know the

exact value. This is a good solution but is unnecessary in some cases, as sometimes

the value of λdom is so large that there is little advantage in using this value. Thus

for exceptionally large values of λdom we simply use N(d̂jk, σ
2) numbers as our

estimate of djk.

7.2 The Attractive-Repulsive Process

As with the issues concerning the implementation of the Bayesian wavelet thresh-

olding algorithm, the issues which arose while simulating the attractive-repulsive

process fall into two categories. Firstly, tracking the events in the dominating

process and secondly, some approximations which were made.

7.2.1 Random Number Generators

As with the implementation in the previous section, three different random number

generators were used to ensure that the simulations were correct. These three

random number generators were used to generate:

141

Chapter 7. Implementational issues

A C p
Independent draws 48271 0 231 − 1
Initial Configuration 16807 0 231 − 1
Times, marks and positions 2650845021 0 232

Table 7.1: Values of the parameters of the three linear congruential generators
used during the implementation of the attractive-repulsive process.

1. Seeds for individual independent draws.

2. The initial configuration of events in the dominating process.

3. Birth and death times, marks and positions of events.

The generators used were all linear congruential pseudo random number generators

as described in the previous section and the reasons for needing several sources of

randomness are as outlined there. The values of the parameters of the recurrence

relation given in equation (7.1) (which is used to generate the random numbers)

are given in Table 7.1. These were all taken from Knuth4 (1998a)

7.2.2 Threaded Binary Trees

It is clear that at every stage of the dominated coupling from the past algorithm

it is necessary to store various pieces of information about each of the events that

are currently alive. Since the list of live events is constantly changing, a dynamic

allocation scheme may be best. Linked lists were initially considered for this task,

but it seemed that trees might be better, due to the fact that inserting a new node

should on average be faster. We made use of the ‘threaded’ binary trees proposed

by Holt5 (1963). Figure 7.1 contains a picture of a doubly-threaded binary tree

4 The third random number generator was actually taken from a list of
updates to this book since publication, which was downloaded from Knuth’s web site
(http://www-cs-faculty.stanford.edu/~knuth/taocp.html). It was found during an ex-
haustive search for the best value of A when p = 232

5 The idea of threading was actually originally proposed by Perlis and Thornton
(1960), but the idea of doubly-threaded binary trees was discovered independently and developed
fully by Holt (1963).

142

7.2. The Attractive-Repulsive Process

�

� �

� � �

� � � 	

Figure 7.1: A doubly-threaded binary tree. Solid arrows represent children and
dashed lines represent threads. As can be seen a link either points to a child or
the predecessor/successor of the node.

like the ones used. For a full discussion of the use of trees in programming see

Knuth (1997). The material below is a brief survey of some of the topics covered

there.

The basic idea of using a tree structure for storing the information about the

events is that each event should be represented by a struct of the following form:

struct event {

short min_life;

double birth;

double death;

double mark;

coord pos;

event *left;

event *right;

short tag;

};

The first five entries in the structure contain information about the event. The

next two are pointers, which point to other events. The last is a tag which tells us

whether the pointers point to children or to another part of the tree. It is these

last three which enable us to implement a tree structure. Each time a new event is

born we allocate space for a new event and ‘insert’ it in the tree of existing events

according to either the new event’s birth time or death time. Whether we use the

new event’s birth time or death time depends upon whether we are simulating the

143

Chapter 7. Implementational issues

dominating process or the maximum/minimum process. The insertion process is

simple. Starting with the root node and proceeding recursively:

1. If the value of the node is less than the value of the new event:

(a) If the node’s tag indicates that the right pointer is a thread, go to

step 3.

(b) Otherwise, set node=node->right and go to step 1.

2. Otherwise (value of the node is greater than the value of the new event):

(a) If the node’s tag indicates that the left pointer is a thread, go to step

4.

(b) Otherwise, set node=node->left and go to step 1.

3. (From step 1(a)) Set the new event’s right pointer to be the value of the

current node’s right pointer, the event’s left pointer to be the address of

the current node, the node’s right pointer to be the address of the new

event, and set the current node’s tag to show that node->right is no longer

a thread.

4. (From step 2(a)) Set the new event’s left pointer to be the value of the

current node’s left pointer, the event’s right pointer to be the address

of the current node, the node’s left pointer to be the address of the new

event, and set the current node’s tag to show that node->left is no longer

a thread.

The algorithm given is used to insert new points into the tree while generating

the dominating process backwards to time −M . Replacing ‘less than’ by ‘greater

than’ in step 1, and ‘greater than’ by ‘less than’ in step 2 gives the algorithm used

to insert new points into the tree while simulating the minimum and maximum

processes forwards to time 0. The ‘value’ of a node is determined by either its birth

time or its death time, depending upon whether we are simulating the dominating

process or the maximum/minimum process. Before beginning the insertion process

144

7.2. The Attractive-Repulsive Process

the new event’s tag is initialised to show that both left and right pointers are

threads.

It is often important to be able to traverse the tree of events in order to, for

example, print the locations of the events, or count the events. Inorder traversal

(i.e. traversal subject to the ordering that was used for insertion) is made easier

by the threads we have mentioned earlier. Threads make it possible to traverse a

tree inorder without using a stack. For details, see Knuth (1997).

Since traversal was necessary for several different reasons, two general pur-

pose functions were written, applyinorder and testinorder to traverse the tree.

These two functions took other functions as parameters (more precisely, they took

pointers to functions as parameters). They would then traverse the tree, perform-

ing the function at each node. The difference between the two is that testinorder

would stop as soon as the function failed on a node, whereas applyinorder ap-

plied the function at each node without regard for a return value. The function

testinorder was used to test coalescence. Stopping after failure was the desired

behaviour since a single event which was in the maximum process but not in the

minimum process meant non-coalescence. The function applyinorder also took

a third parameter (the first was the root node of the tree, the second the func-

tion). An example of this parameter’s use was as a format string together with

the function printcoord. See Section A.2.2 for further examples.

7.2.3 Calculating overlap

The main difficulty encountered while simulating this model was what to do about

the calculations involving acceptance or rejection of new events. During this step

it is necessary to calculate

m
{
(x⊕G1) \X ⊕G1

}
and

m
{
(x⊕G2) \X ⊕G2

}
145

Chapter 7. Implementational issues

for both the minimum and the maximum processes. Since calculating this overlap

exactly is a non-trivial exercise it was decided to simplify matters by instead

centring a rectangular grid of points at x with side-length 2r (where r is the

radius of the disk G) and counting the number of points in this grid which were in

x⊕G but not in X ⊕G. We chose a grid side length of 20 points, giving a total

of 400 points, over 300 of which will be in x⊕G.

146

Appendix A

Implementational details

The source code for all of the programs I have written is available on the web from

my home page:

http://www.maths.bris.ac.uk/~magka/

Here we discuss that implementation in some detail, making heavy reference to

the source.

A.1 Bayesian Wavelet Thresholding

The algorithm for the Bayesian wavelet thresholding model comes in two pieces:

First of all the front end which was used to generate multiple independent draws

and secondly the program itself, which generates a single draw from the target

distribution using dominated coupling from the past.

A.1.1 Automating several runs of the program

In order to automate the process of running the program multiple times to obtain

several independent draws from the posterior, a shell script and various little C

programs were written. The pseudo random number generator in Section 7.1.2 is

an example of one of these little C programs.

The shell script for running the program on the ‘heavisine’ example data was as

follows1:

1 Due to page width restrictions, one line in this script has been split across two

147

Appendix A. Implementational details

#!/bin/csh

if (-e /home/magka/Cfiles/Data/hvs/out/noisyhvsdwt.gz) then

/bin/rm /home/magka/Cfiles/Data/hvs/out/noisyhvsdwt.gz

else if (-e /home/magka/Cfiles/Data/hvs/out/noisyhvsdwt.bz2) then

/bin/rm /home/magka/Cfiles/Data/hvs/out/noisyhvsdwt.bz2

else if (-e /home/magka/Cfiles/Data/hvs/out/noisyhvsdwt) then

/bin/rm /home/magka/Cfiles/Data/hvs/out/noisyhvsdwt

endif

touch /home/magka/Cfiles/Data/hvs/out/noisyhvsdwt

rand $1 >numbers

foreach i (‘sequence $1‘)

cat protofile >file$i

uncat numbers $i >>file$i

/bin/nice -10 cftpsim file$i \

>> /home/magka/Cfiles/Data/hvs/out/noisyhvsdwt

/bin/rm file$i

end

/bin/rm numbers

bzip2 /home/magka/Cfiles/Data/hvs/out/noisyhvsdwt

The first few lines (up to rand $1 >numbers2) simply set up the output files,

removing any previous occurrences of them if they exist. The next line calls the

program rand, which generates two times the number passed to it as the first

parameter of random numbers between 0 and 231 − 1 and puts this output in the

file numbers. The random number generator used in rand is that of Section 7.1.2.

Next we enter a for loop, which runs once for each i in the output of sequence

$1. The program sequence simply generates a list of integers between 0 and n−1,

where n is the first parameter passed to it. This for loop first writes an input file

for the program from the concatenation of protofile and the next two numbers in

the file numbers (this is done using the program uncat). It then runs the program

lines. To indicate this the character “\” is used to indicate that the following line should be
treated as if it were appended to the current line.

2 A note on variables in shell scripts: If our shell script is called, for example, run,
then we would call it using the command ./run from the command line. If the script took any
parameters then we would call it using the command ./run par1 par2, etc. depending on the
number of parameters required by the script. These parameters are referenced within the script
using the notation $1 for the first parameter, $2 for the second parameter, and so on. It is also
possible to use variables which exist solely within the scope of the script. An example of this is
i in the foreach loop in our script. It is defined in the foreach statement and referenced as $i.

148

A.1. Bayesian Wavelet Thresholding

with this input file and finally deletes the input file to save cluttering the file space

with hundreds of files each time the program is run. The last two lines remove the

file numbers and bzip23 the output file to save disk space. An example of the file

protofile used as part of the input file is as follows:

/home/magka/Cfiles/Data/hvs/noisyhvs512dwt

0.2973434

0.15

0.7

3.0

128.0

1

Each line denotes one variable input to the program. The first is the location of

the file containing the data. The second is the value of σ, the third is the value of

τ 2, the fourth is the value of λ, the fifth is the value of γ, the sixth is the initial

value of −M used and the seventh is the value of the exponent of Jjk in the prior.

The scripts used to generate multiple independent draws from the posterior from

different data sets are the same except for differences in file names.

A.1.2 A systematic deconstruction of the implementation

Having covered some general aspects of the implementation we now turn to the

specifics. There are 23 different functions (other than standard library routines)

in the implementation of the program. The program was split into these separate

functions for several reasons:

1. To split the algorithm into separate pieces which could be tested and written

individually.

2. To make it possible to split the program between several files so that if a

piece was changed it was only necessary to recompile that piece and link the

pieces rather than having to recompile the entire program.

3 bzip2 is a block-sorting file compressor which usually offers better compression
(especially of text files) than the more traditional Lempel-Ziv coding used by compression pro-
grams such as gzip.

149

Appendix A. Implementational details

3. To make it possible to re-use parts of the code without any additional editing.

The entire algorithm can be written in as follows:

1. Read parameter values and file name of the data file.

2. Scan the data file to find the number of data locations.

3. Allocate memory for this data and all of the other information stored about

each location.

4. Read data into the memory which has just been allocated.

5. Calculate the initial values of the dominating process at time 0

6. Repeat:

(a) Generate the dominating process from time 0 backwards to time −M .

(b) Run minimum and maximum processes forwards in time from −M to

0.

(c) Double M.

until the minimum and maximum processes have coalesced.

7. For each location

(a) If there are Jjk > 0 points alive at the location then generate a

N
(

τ2Jjkd̂jk

σ2+τ2Jjk
,

σ2τ2Jjk

σ2+τ2Jjk

)
number and output that to standard out.

(b) If there are no live points at the location write 0 to standard out.

8. Print the value of −M at which coalescence occurred to standard error.

We now proceed to expand upon this algorithm and fill in some of the details.

Each time we come across a new function in the C code we name it and say which

file it is contained within so that it can be referred to with ease in the sources.

Step 1 is carried out by the function getparameters which is in the file getp.c.

This basic input step was put in a separate function to make it possible to have

two different methods of input: interactive and non-interactive. The interactive

150

A.1. Bayesian Wavelet Thresholding

version prompts for the values of the parameters, while the non-interactive version

reads the values from a file which is specified as the first (only) argument to the

program on the command line. Steps 2-4 are fairly trivial and step 5 is where the

simulation proper begins.

Step 5 is carried out by the function initialise in the file init.c. The algo-

rithm for this function is:

Repeat, for each location in the process (index by ‘i’):

1. Calculate the natural logarithm of the value of λ for location ‘i’.

2. If this is less than 4 (i.e. if λ . 54) use the exact value of λ

3. Otherwise set this location to ‘always on’ (see Section 7.1.5) and

(a) If log(λ) < 16 (i.e. if λ . 8, 886, 281) find the value of the dominating

process at this location at time 0 and set the number of points alive in

the maximum and minimum processes to this value.

(b) Otherwise set the values of the maximum and minimum processes to

unity.4

4. If the location was not ‘always on’ then

(a) Decide how many points at the current location are alive in the domi-

nating process at time 0.

(b) Give the current location a markseed and a timeseed.

5. Label each point.

6. Calculate the value of pmin for point i.

The reasons for steps 1 to 3 are covered in Section 7.1.5. Step 4(b) is covered in

Section 7.1.3. Step 5 is there so that when, later in the program, the order of the

locations is sorted according to the time until the next birth or death happens

4 This is done to indicate that λ for this location is very big. The probability of an
‘always on’ point having only one point alive (and thus the wrong thing happening due to the
use of the value one as the signal here) is so small that in practise it will never happen.

151

Appendix A. Implementational details

at that location we can still determine where in the configuration that location

belongs. Step 6 is used to set up the initial configuration of the minimum process.

Returning to the main program, step 6(a) is carried out by the function

dominating in the file dom.c. The algorithm for this function is:

1. Calculate how many events (births and deaths) happen to each location

between time 0 and time −M .

2. For each location i in turn:

(a) If location i is not ‘always on’ and the number calculated in step (1) is

non-zero then:

i. Give each point which is alive in the dominating process at time 0

a birth time and a mark and allocate a pointer to the point.

ii. Run through the birth-death process for the dominating process

backwards from 0 to −M . Give each point a mark and store the

birth and death times. Also allocate a pointer to each point.

iii. Sort the pointers according to birth times so that we now have a list

sorted by death times and one sorted by birth times. Run through

the process to find the maximum number of points which are alive

at location i at any one time.

iv. Continue to run through the births until either one is before -M or

there are no points left. Store the birth, death and mark info for

the first point to be born at location i after time -M.

v. Store the number of points alive in the dominating process at time

-M as the initial value of the maximum process. Use the points’

marks to determine whether to keep these in the minimum process.

Store the death times and sort them.

(b) Otherwise store indicators to show that there are no death times or birth

times and if the point is not ‘always on’ set the value of the maximum

and minimum processes to zero.

152

A.1. Bayesian Wavelet Thresholding

Step 1. is done so that memory can be allocated in step 2. (and later in the

program in part of step 6(b) of the main algorithm) and so that step ii. and others

can be carried out the correct number of times. Steps i.–v. do lots of housekeeping

operations and find the state of the process at time −M and the point which is

born soonest after time −M . Step (b) is more housekeeping, telling the program

later on that there are no births or deaths for these locations between time −M

and 0.

Step 6(b) is the real core of the program and is carried out by the function

process in the file process.c. It takes the dominating process generated in the

previous step and uses it to run the maximum and minimum processes from time

−M back to time 0. The algorithm for this function is:

1. Work out which locations are in X ⊕G.

2. Sort two arrays of pointers which point to the data stored about each location

— one according to the time until the next birth, the other according to the

time until the next death.

3. Repeat:

(a) If next event is a death:

i. Delete the point from the max and min processes and updateX⊕G.

ii. Re-order the array of pointers which is sorted according to the time

until the next death according to the next death time at the location

which has just experienced a death (if there are no more live points

at this location then put it at the end of the list).

(b) Otherwise (a birth):

i. Calculate m((x⊕G) \ (Y (−M,u)⊕G)) (recall from Section 4.1.4

that Y (−M,u) ⊕ G is our notation for X ⊕ G at the time instant

u, when we have simulated from time −M) for that point in both

processes to find the rejection probabilities on page 123.

153

Appendix A. Implementational details

ii. If the rejection probability for the maximum process is less than

the point’s mark then add the point and add its death time to the

list for that location. If this point is the only one at this location

then update X ⊕G. Re-order the array of pointers which is sorted

according to the time until the next death if necessary.

iii. Repeat the previous step for the minimum process. The locations

will not need to be re-ordered.

iv. Find the details of the next birth at the location we are looking at

(the one which has just had a birth).

v. Re-order the array of pointers which is sorted according to the time

until the next birth.

Until all events at all points have been dealt with.

4. Determine whether the min and max processes are the same and return this

fact.

Step 1 above is carried out by the function covered in the file cover.c The

algorithm for this is simple but long-winded, so we do not describe it here, but

refer the interested reader to the source code.

Step 2 is carried out by the function ssort in the file ssort.c. It is a shell sort

algorithm using the gaps recommended in (Knuth 1998b). Comparisons are done

by the function compare in the file process.c.

If the input file has more than 64 data points in it then step 3(a.i) is carried

out by the two functions mindeath and maxdeath in the files mindeath.c and

maxdeath.c respectively. If not then covered is used as in point (1) above. This

is because if the dataset is small it is most efficient just to re-generate the whole

of X ⊕ G, whereas if the dataset is large it is more efficient to work out exactly

which locations could be affected by a death at the given location and only re-

generate X ⊕ G at those locations. mindeath and maxdeath are simply very

long and complicated conditionals which determine where the location is and then

154

A.2. The Attractive-Repulsive Process

work out which points in x ⊕ G are retained in X ⊕ G when x is removed from

the process. Due to the complex structure that the point process lives on, these

functions account for more than half of the total code. Step 3(a.ii) simply shuffles

the list up and then inserts the location where the death has just occurred at the

correct place.

In step 3(b.i) m((x⊕G)\(Y (−M,u)⊕G)) is calculated by the function measure

in the file measure.c. Updating X ⊕ G for the max processes in step 3(b.ii) is

done by the function maxbirth in the file maxbirth.c. The algorithm for this is

simple but long-winded, so we refer the interested reader to the source code. The

re-ordering part is only done if the death time of the point which has just been

born is sooner than any other death time at that location and is done by the same

shuffle-up method as in step 3(a.ii). Step 3(b.iv) is done in the same way as we

found the first birth times in the previous step of the main algorithm and step

3(b.v) again uses the same method as step 3(a.ii).

Returning once again to the main algorithm, step 7 is carried out by the function

rnorm in the file rnorm.c. This is an implementation of the Box-Muller scheme

for generating Gaussian random variables suggested in Press et al. (1993).

A.2 The Attractive-Repulsive Process

As with the implementation discussed in the previous section, the algorithm for

the attractive-repulsive process comes in two pieces, the front end for generating

multiple independent draws and the “back end”, which generates single draws from

the desired distribution when passed a collection of parameter values and seeds.

We begin by discussing the front end.

A.2.1 Automating several runs of the program

A procedure very similar to that outlined in Section A.1.1 was used to simulate

multiple independent draws with given parameter values. We briefly outline this

procedure below.

155

Appendix A. Implementational details

A very slightly edited version of the shell script used to run the program multiple

times is reproduced below:

#!/bin/csh

if (-e k_all) then

/bin/rm k_all

endif

if (-e t_all) then

/bin/rm t_all

endif

if (-e f_all) then

/bin/rm f_all

endif

if (-e g_all) then

/bin/rm g_all

endif

if (-e mipd.out) then

/bin/rm mipd.out

endif

if (-e events0) then

/bin/rm events*

endif

./rand3 $1 >numbers

touch k_all

touch f_all

touch g_all

touch t_all

touch mipd.out

foreach i (‘./sequence $1‘)

cat protofile >file$i

./uncat3 numbers $i >>file$i

echo "1.0 1.0" >events$i

/bin/nice -15 ./attrepsim file$i >>events$i

/bin/nice -15 ./tork events$i >events{$i}\k

cat events{$i}\k >>k_all

/bin/nice -15 ./tort events$i >events{$i}\t

cat events{$i}\t >>t_all

/bin/nice -15 ./torg events$i >events{$i}\g

cat events{$i}\g >>g_all

/bin/nice -15 ./torf events$i >events{$i}\f

cat events{$i}\f >>f_all

/bin/nice -15 tormipd events$i >> mipd.out

/bin/rm file$i

156

A.2. The Attractive-Repulsive Process

end

/bin/rm numbers

As can be seen, the script does not only run the program (attrepsim) multiple

times, it also runs several other programs on the output of the program. These

programs (tork, tort, torg, torf and tormipd) calculate the K, T , G and F

functions and the minimum inter-event distances for the point patterns generated

by the main program. See Sections 4.2 and 4.4.2 for details of what these functions

are. The reason for the tor prefix to each of their names is because they use

toroidal boundary conditions. The programs rand3 and uncat3 perform the same

functions as rand and uncat described in Section A.1.1 except that they work on

triples of numbers rather than pairs, since three seeds are needed for attrepsim,

compared with two for cftpsim. An example of the input file protofile is as

follows:

100

1000.0

0.05

0.03

0.1

0.03

0.1

32

As before, each line denotes one variable input to the program. The first is the

value of λ, the second is the value of γ1, the third is the value of γ2, the fourth

and sixth are parameters of G1, the fifth and seventh are parameters of G2 and

the eighth is the initial value of −M used. The reason for two parameters for G1

and G2 is that the program actually uses ellipses centred at the events rather than

circles. The first parameter is then the length of the semi-axis in the x-direction

and the second is the length of the semi-axis in the y-direction.

157

Appendix A. Implementational details

A.2.2 A systematic deconstruction of the implementation

Having covered general aspects of the implementation we now turn to specifics.

Other than standard library routines there are 28 different functions in the imple-

mentation of the program. Reasons for splitting the program up in this fashion

are given in Section A.1.2.

We begin by discussion the algorithm briefly before going into each of the steps

in more detail. It should be noted that much of the implementation is very similar

to that of Section A.1.2. As a result, names for similar functions and files are

often similar or even the same between the two implementations. This does not

mean, however, that files or functions with the same name are identical to those

discussed in Section A.1.2. In fact only the random number generators were used

without modification.

The overall algorithm is as follows:

1. Read parameter values.

2. Calculate some summaries of these parameters.

3. Repeat:

(a) Calculate the initial values of the dominating process at time 0

(b) Generate the dominating process from time 0 backwards to time −M .

(c) Run minimum and maximum processes forwards in time from −M to

0.

(d) Double M.

until the minimum and maximum processes have coalesced.

4. Print the locations of the events in the coalesced process to standard out.

5. Print the value of −M at which coalescence occurred to standard error.

Step 1 is carried out by the function getparameters in the file getp.c and is

fairly trivial. Step 2 calculates λγ
−m(G2)
2 and γ

−m(G1)
1 to minimise the number of

parameters it is necessary to pass in steps 3(a) and 3(b) (i.e. purely for aesthetic

158

A.2. The Attractive-Repulsive Process

reasons, as the passing of the extra parameters and the extra calculations in each

loop are likely to make very little difference!)

Steps 3(a) and 3(b) are carried out by the function dominating in the file dom.c.

The algorithm for this function is:

1. Calculate initial distribution by generating a Poisson(λγ
−m(G2)
2) number and

scattering this many events Uniformly in the unit square:

(a) Give each event a U [0, 1] × U [0, 1] position, a U [0, 1] mark and an

Exponential(1) birth time5 (remember, we initially simulate backwards

in time, so ‘births’ happen after ‘deaths’).

(b) Insert each event into our tree6 of currently living events according to

its birth time.

2. Generate the dominating process from time 0 backwards to time −M by

repeating the following steps until all births and deaths in (−M, 0) are ac-

counted for:

(a) Generate an Exponential(λγ
−m(G2)
2) random number. This is the time

until the next death (recall again that we move backwards in time).

(b) If the time until the next death is less than the time until the next

birth:

i. Give the new event a U [0, 1]× U [0, 1] position, a U [0, 1] mark and

an Exponential(1) birth time.

ii. Insert the event into our tree of currently living events according

to its birth time.

(c) Otherwise (a birth occurs next) remove the event which is due to be

born.

(d) Update the time-until-next-death and time-until-next-birth variables.

5 We don’t care when the event dies, as we know that it is alive at time 0, and we
don’t care what happens any further ‘forward’ in time.

6 See Section 7.2.2 for a discussion of the role of tree structures in our algorithm.

159

Appendix A. Implementational details

3. Decide which events in the dominating process at −M are alive in the min-

imum process by rejecting those whose mark is less than γ
−m(G1)
1 γ

m(G2)
2 .

4. Transform the tree of events so that it is ordered by death time rather than

birth time.

Steps 1(a) and 2(b.i) were taken care of by the function newnode, Steps 1(b) and

2(b.ii) were done by the function insert dom, Step 2(c) was performed using the

function remove left, Step 3 used the function in min in conjunction with the

function applyinorder and Step 4 used the function birth to death. All of

these functions other than in min (which is in the file dom.c) are found in the file

treet.c. The functions insert dom and applyinorder are discussed in Section

7.2.2

Returning to the main algorithm, we come to step 3(c), which is the core of the

coupling from the past algorithm. This was carried out by the function process

in the file process.c. It takes the maximum and minimum processes, generated

at time −M in the previous step, and runs them forwards to time 0 using the

transitions of the dominating processes. The algorithm for this function is:

1. Run minimum and maximum processes forwards in time from −M to 0 by

repeating the following steps until there are no more births or deaths before

0:

(a) If the next event (in the sense defined on page 96) is a death, remove

the event and update the variable holding the next death time.

(b) Otherwise (next event (in the sense defined on page 96) is a birth):

i. Calculate the probability of accepting the event.

ii. If we accept the event in the maximum process:

A. Insert it into the tree of events according to its death time.

B. If we also accept the event in the minimum process, set the flag

which says that.

C. If new event dies before any other event, update the variable

holding the next death time.

160

A.2. The Attractive-Repulsive Process

iii. Otherwise (rejecting the event) free up the space allocated for that

event.

iv. Update the value of the next event to be born.

2. Test whether the maximum and minimum processes have coalesced.

Step 1(a) is carried out by the function remove left in the file treet.c and using

the function left, also in the file treet.c, to find the next death time. Step 1(b.i)

uses the function calc p in the file ellipse.c. The algorithm for this function is:

1. Count the number of events in the minimum and maximum processes.

2. Make an array containing the foci of ellipses centred at the events in the

process, and calculate the foci of the ellipse centred at the new event. Do

this for both G1 and G2.

3. Calculate how much extra area the ellipse centred at the new event adds to

m(X ⊕G1) and m(X ⊕G2) in both the minimum and maximum processes.

4. Use the values calculated in the previous step to calculate the acceptance

probabilities.

Step 1 used the functions count and count min in the file ellipse.c together

with the function applyinorder in the file treet.c. Step 2 used the functions

makeellipseinorder and makeellipse in the file treet.c. Step 3 used the func-

tion extra in the file ellipse.c. This lengthy function uses a 20 × 20 grid to

discretize the problem, and is covered briefly in Section 7.2.3. Step 4 is trivial.

Returning to the algorithm for Step 3(c) of the main algorithm, Step 1(b.ii.A)

is performed by the function insert real in the file treet.c, which is discussed

in Section 7.2.2. Steps 1(b.ii.B), 1(b.ii.C) and 1(b.iii) are trivial. Step 1(b.iv) is

performed by the function nextbirth in the file process.c. Step 2 uses the func-

tion difference in the file process.c together with the function testinorder in

the file treet.c.

Steps 4 and 5 of the main algorithm are trivial.

161

Bibliography

Abramovich, F. and Y. Benjamini (1996). Adaptive thresholding of wavelet

coefficients. Computational Statistics and Data Analysis 22, 351–361.

Abramovich, F., T. Sapatinas, and B. W. Silverman (1998). Wavelet threshold-

ing via a Bayesian approach. Journal of the Royal Statistical Society, Series

B 60, 725–749.

Asmussen, S., P. W. Glynn, and H. Thorisson (1992). Stationary detection in

the initial transient problem. ACM Transactions on Modeling and Computer

Simulation 2, 130–157.

Baddeley, A. and R. Turner (2000). Practical maximum pseudolikelihood for

spatial point patterns. Australian and New Zealand Journal of Statistics 42,

283–322.

Baddeley, A. J. and B. W. Silverman (1984). A cautionary example on the use

of second-order methods for analyzing point patterns. Biometrics 40, 1089–

1093.

Baddeley, A. J. and M. N. M. van Lieshout (1995). Area-interaction point pro-

cesses. Annals of the Institute for Statistical Mathematics 47, 601–619.

Bartlett, M. S. (1964). The spectral analysis of two-dimensional point processes.

Biometrika 51, 299–311.

Benjamini, Y. and Y. Hochberg (1995). Controlling the false discovery rate: a

practical and powerful approach to multiple testing. Journal of the Royal

Statistical Society, Series B 57, 289–300.

162

BIBLIOGRAPHY

Berman, M. and R. Turner (1992). Approximating point process likelihoods with

GLIM. Applied Statistics 41, 31–38.

Berthelsen, K. K. and J. Møller (2001). Perfect simulation and inference for

spatial point processes. Technical Report R-01-2009, Department of Mathe-

matical Sciences, Aalborg University.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice sys-

tems. Journal of the Royal Statistical Society, Series B 36, 192–236.

Besag, J. (1975). Statistical analysis of non-lattice data. The Statistician 24,

179–195.

Besag, J. (1977a). Some methods of statistical analysis for spatial data. Bulletin

of the International Statistical Institute 47, 77–92.

Besag, J. E. (1977b). Comment on “modelling spatial patterns” by B.D. Ripley.

Journal of the Royal Statistical Society, Series B 39, 193–195.

Brooks, S. P. (1998). Markov chain Monte Carlo method and its application.

The Statistician 47, 69–100.

Cai, H. (1999). Exact sampling using auxiliary variables. In Proceedings of the

Statistical Computing Section, pp. 139–142. American Statistical Associa-

tion.

Cressie, N. A. C. (1993). Statistics for Spatial Data. New York: John Wiley &

Sons.

Daubechies, I. (1992). Ten Lectures on Wavelets. Philadelphia, Pennsylvania:

SIAM.

Diggle, P. J. (1978). On parameter estimation for spatial point processes. Journal

of the Royal Statistical Society, Series B 40, 178–181.

Donoho, D. L. and I. M. Johnstone (1994). Ideal spatial adaption by wavelet

shrinkage. Biometrika 81, 425–455.

163

BIBLIOGRAPHY

Donoho, D. L. and I. M. Johnstone (1995). Adapting to unknown smoothness

via wavelet shrinkage. Journal of the American Statistical Association 90,

1200–1224.

Fernández, R., P. A. Ferrari, and N. L. Garcia (1999). Perfect simula-

tion for interacting point processes, loss networks and Ising models.

arXiv:math.PR/9911162.

Fill, J. A. (1998). An interruptible algorithm for perfect sampling via Markov

chains. The Annals of Applied Probability 8, 131–162.

Fill, J. A. and M. Huber (2000). The randomness recycler: A new technique for

perfect sampling. arXiv:math.PR/0009242.

Fill, J. A., M. Machida, D. J. Murdoch, and J. S. Rosenthal (2000). Exten-

sion of Fill’s perfect rejection sampling algorithm to general chains. Random

Structures and Algorithms 17, 290–316.

Gamerman, D. (1997). Markov Chain Monte Carlo. London: Chapman & Hall.

Geyer, C. J. and E. A. Thompson (1992). Constrained monte carlo maximum

likelihood for dependent data. Journal of the Royal Statistical Society, Series

B 54, 657–699.

Green, P. J. and D. J. Murdoch (1998). Exact sampling for Bayesian inference:

towards general purpose algorithms (with discussion). In J. M. Bernardo,

J. O. Berger, A. P. Dawid, and A. F. M. Smith (Eds.), Bayesian Statistics

6, pp. 301–321. Oxford University Press. Presented as an invited paper at

the 6th Valencia International Meeting on Bayesian Statistics, Alcossebre,

Spain, June 1998.

Häggström, O., M. N. M. van Lieshout, and J. Møller (1999). Characterisation

results and Markov chain Monte Carlo algorithms including exact simulation

for some spatial point processes. Bernoulli 5, 641–658.

164

BIBLIOGRAPHY

Hobert, J. P., C. P. Robert, and D. M. Titterington (1999). On perfect simula-

tion for some mixtures of distributions. Statistics and Computing 9, 287–298.

Holt, A. W. (1963). A Mathematical and Applied Investigation of Tree Struc-

tures. Thesis, University of Pennsylvania.

Huber, M. (1999). Perfect sampling without a lifetime commitment. Preprint.

Jensen, J. L. and J. Møller (1991). Pseudolikelihood for exponential family mod-

els of spatial point processes. Annals of Applied Probability 1, 445–461.

Jost, J. (1998). Postmodern Analysis. Berlin: Springer-Verlag.

Kelly, F. P. (1979). Reversibility and Stochastic Networks. Chichester: John

Wiley & Sons.

Kelly, F. P. and B. D. Ripley (1976). A note on Strauss’s model for clustering.

Biometrika 63, 357–360.

Kendall, W. S. (1997). On some weighted Boolean models. In D. Jeulin (Ed.),

Advances in Theory and Applications of Random Sets, pp. 105–120. World

Scientific Publishing Company.

Kendall, W. S. (1998). Perfect simulation for the area-interaction point process.

In L. Accardi and C. C. Heyde (Eds.), Probability Towards 2000, pp. 218–

234. Springer.

Kendall, W. S. and J. Møller (1999). Perfect Metropolis-Hastings simulation of

locally stable point processes. To appear in Advances in Applied Probability.

Kerscher, M. (1998). Regularity in the distribution of superclusters? Astronomy

and Astrophysics 336, 29–34.

Kingman, J. F. C. and S. J. Taylor (1966). Introduction to Measure and Proba-

bility. Cambridge: Cambridge University Press.

Knuth, D. E. (1997). Fundamental Algorithms (Third ed.), Volume 1 of The Art

of Computer Programming. Reading, Massachusetts: Addison-Wesley.

165

BIBLIOGRAPHY

Knuth, D. E. (1998a). Seminumerical Algorithms (Third ed.), Volume 2 of The

Art of Computer Programming. Reading, Massachusetts: Addison-Wesley.

Knuth, D. E. (1998b). Sorting and Searching (Second ed.), Volume 3 of The Art

of Computer Programming. Reading, Massachusetts: Addison-Wesley.

Lindvall, T. (1992). Lectures on the Coupling Method. New York: John Wiley

& Sons.

Loizeaux, M. A. (2001). Bayesian inference for spatial point processes via perfect

sampling. Ph. D. thesis, Department of Statistics, Florida State University.

Lovász, L. and P. Winkler (1995). Exact mixing in an unknown Markov chain.

Electronic Journal of Combinatorics 2. Paper #R15.

Lund, J. and E. Thönnes (2000). Perfect simulation of point processes given

noisy observations. Technical Report 366, Department of Statistics, Univer-

sity of Warwick.

Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the

wavelet representation. IEEE Transaction on Pattern Analysis and Machine

Intelligence. 11, 674–693.

Matheron, G. (1975). Random Sets and Integral Geometry. New York: John

Wiley & Sons.

Meyn, S. P. and R. L. Tweedie (1993). Markov Chains and Stochastic Stability.

London: Springer-Verlag.

Mira, A., J. Møller, and G. O. Roberts (2001). Perfect slice samplers. Journal

of the Royal Statistical Society, Series B 63, 593–606.

Møller, J. and G. K. Nicholls (1999). Perfect simulation for sample-based in-

ference. Technical Report R-99-2011, Department of Mathematical Sciences,

Aalborg University.

Møller, J. and K. Schladitz (1999). Extensions of Fill’s algorithm for perfect

simulation. Journal of the Royal Statistical Society, Series B 61, 955–969.

166

BIBLIOGRAPHY

Møller, J. and R. Waagepetersen (1998). Markov connected component fields.

Advances of Applied Probability 30, 1–35.

Murdoch, D. J. and P. J. Green (1998). Exact sampling from a continuous state

space. Scandinavian Journal of Statistics 25, 483–502.

Murdoch, D. J. and J. S. Rosenthal (2000). Efficient use of exact samples. Statis-

tics and Computing 10, 237–243.

Nason, G. P. (1996). Wavelet shrinkage using cross-validation. Journal of the

Royal Statistical Society, Series B 58, 463–479.

Norris, J. R. (1997). Markov Chains. Cambridge: Cambridge University Press.

Perlis, A. J. and C. Thornton (1960). Symbol manipulation by threaded lists.

Communications of the ACM 3, 195–204.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1993).

Numerical Recipes in C (Second ed.). Cambridge: Cambridge University

Press.

Propp, J. G. and D. B. Wilson (1996). Exact sampling with coupled Markov

chains and applications to statistical mechanics. Random Structures and Al-

gorithms 9, 223–252.

Propp, J. G. and D. B. Wilson (1998). How to get a perfectly random sample

from a generic Markov chain and generate a random spanning tree of a

directed graph. Journal of Algorithms 27, 170–217.

Ripley, B. D. (1976). The second-order analysis of stationary point processes.

Journal of Applied Probability 13, 255–266.

Ripley, B. D. (1977). Modelling spatial patterns (with discussion). Journal of

the Royal Statistical Society, Series B 39, 172–212.

Ripley, B. D. and F. P. Kelly (1977). Markov point processes. Journal of the

London Mathematical Society 15, 188–192.

167

BIBLIOGRAPHY

Ripley, B. D. and B. W. Silverman (1978). Quick tests for spatial interaction.

Biometrika 65, 641–642.

Ross, S. M. (1990). A Course in Simulation. New York: Macmillan.

Schladitz, K. and A. J. Baddeley (2000). A third order point process character-

istic. Scandinavian Journal of Statistics 27, 657–671.

Silverman, B. W. and T. C. Brown (1978). Short distances, flat triangles and

Poisson limits. Journal of Applied Probability 15, 815–825.

Stein, C. (1981). Estimation of the mean of a multivariate normal distribution.

Annals of Statistics 9, 1135–1151.

Stoyan, D., W. S. Kendall, and J. Mecke (1995). Stochastic Geometry and its

applications (Second ed.). Chichester: John Wiley & Sons.

Strauss, D. J. (1975). A model for clustering. Biometrika 62, 467–475.

Sutherland, W. A. (1975). Introduction to Metric and Topological Spaces. Ox-

ford: Oxford University Press.

Thönnes, E. (1999). Perfect simulation of some point processes for the impatient

user. Advances in Applied Probability 31, 69–87.

van Lieshout, M. N. M. and A. J. Baddeley (1996). A nonparametric measure

of spatial interaction in point patterns. Statistica Neerlandica 50, 344–361.

Widom, B. and J. S. Rowlinson (1970). A new model for the study of liquid-

vapor phase transitions. Journal of Chemical Physics 52, 1670–1684.

Williams, D. (1991). Probability with Martingales. Cambridge: Cambridge Uni-

versity Press.

168

