
Cover

SmartWORKS
Developer's Guide
v. 5.2.0

AudioCodes USA
www.audiocodes.com/blades

27 World 's Fa i r Dr ive, NJ · 08873
T: 732-469-0880 · F : 732-469-2298

404-0001-003 · Build 090828.01 REVB
404-0001-003 · Build 040928.01REVB

T a b l e O f C o n t e n t sAudioCodes, Inc. · I

TOC
Chapter 11 · Welcome . 1
Legal Notice . 2

About This Documentation . 2

Release Update History . 5
SmartWORKS 3.11 . 5
SmartWORKS 3.10 . 5
SmartWORKS 3.9 . 5
SmartWORKS 3.8 . 5
SmartWORKS 3.7 . 5
SmartWORKS 2.10.0 . 6

Document Version Control . 7

Contacting AudioCodes USA . 7
Technical Support . 7
Sales and General Information . 8
Mailing Address—USA . 9

Chapter 211 · SmartWORKS Overview 11
SDK Overview . 12

 System Requirements . 12
Developer’s Notes . 12

Microsoft IDE debug mode . 12
Preventing Errors During Shutdown . 12

Ensuring the SDK is Operational . 13
Checking the Driver Status . 13
Running the SmartView Demo Application . 13
SmartControl Status . 13
Troubleshooting during Installation . 13

SDK Contents . 13
Applications . 13
Folders and Files . 14
Drivers . 16

Ensuring User Application Compatibility with the SDK . 16
Plug and Play (PNP) Capabilities . 17

Architecture Overview . 17
The SmartWORKS Channel Model . 18

TDM bus . 18
DTMF, MF, Activity Detection . 19
Input Mixer . 19
AGC . 19
Gain . 19
Volume . 19
AVC . 19
Live Monitor . 19
Encoders/Decoders . 19
Host Interface . 19
Tone Generator . 19

Board and Channel Numbering . 20
Physical Board Numbering . 20

Adding a New Board to the System . 20

T a b l e o f C o n t e n t s
SmartWORKS Developer’s Guide · II
Controlling Board Numbering . 20
Board and Channel Numbering . 20
Global Channel Index . 20
Definition of NI, DR, and Channel . 21
CT Bus TimeSlot Allocation . 22

Chapter 325 · API Overview . 25
API/DLL Structure . 26

SmartWORKS Function Types . 26
Immediate and Background Functions . 26
Immediate Functions . 26
Background Functions . 26

Resource Queues . 26
 Parameters . 27

Changing Settings . 27
Preserve Data Buffer . 27

Function Completion Notification . 27
Overlapped Events . 27
Asynchronous Callbacks . 28

NULL Pointer Checking . 28
Return Codes . 28
Event Control . 29

UNICODE Support . 29

Media Formats . 31
Wave File Support . 31

Wave File Playback . 32
Media Format Naming . 32

MF Detection . 34
R1 MF DIGITS . 34
R2 MF Digits . 34

Board Type Naming . 36

Windows Event Viewer . 38

Chapter 441 · Writing An Application 41
Getting Started . 42

Important Note for Linux Developers . 42
SmartWORKS Flowchart . 43

Event Control . 44
Polling . 45
Call back Function . 47

System Wide Definitions . 49
Return Codes . 49

Using Data Structures . 51
Zero Out Parameters . 52

T a b l e o f C o n t e n t s
SmartWORKS Developer’s Guide · III
Chapter 553 · Theory of Operation . 53
Overview . 54

System Functions . 54
System Configuration . 54
System Information . 54
Sync Host/Board Time . 54

Board Functions and Configuration . 55
Board Control . 55

Board Information Functions . 55
Board Identification . 55

Locating Boards in a Chasis . 56
Using a Board’s Thumbwheel (NGX only) . 56
Obtain Board’s Serial Number . 56
OEM Identification . 56

Board Configuration . 57
Board Configuration Functions . 57
Setting the Board’s Clock Source . 59

Board Firmware Functions . 60
Managing Board Events . 60

Putting an Event on the Board Queue . 61

Channel Control and Information Functions . 61
Channel Control Functions . 61

Opening and Closing Channels . 61
Managing Background Functions . 61
Channel Configuration . 62
Setting Channel to Default . 62

Channel Numbering (GCI) Functions . 62
Channel Information & Statistics . 63

Runtime Information . 63
Runtime Errors . 63

Channel Event Reporting . 64
Priority Events . 64
Controlling Event Queues . 64
Controlling Event Reporting . 64
Putting an Event on the Channel Queue . 65

Call Connection Functions . 65
SmartWORKS Call Control API . 65

Call Processing . 65
Incoming Calls . 66
Outgoing Call . 67
Application Initiated Call Clearing . 69
Network Initiated Call Clearing . 70
Events Generated when Passive Monitoring . 70

ISDN Standards . 74
Supplementary Services for ISDN Terminate Support . 74
Basic Call Setup . 75

SmartWORKS RBS Signaling Protocols . 75
Robbed Bit Signaling . 75

NFAS Support . 80
Passive Tapping NFAS . 81
NFAS group . 81

NFAS support under SmartWORKS . 81

T a b l e o f C o n t e n t s
SmartWORKS Developer’s Guide · IV
SmartWORKS Configuration . 82
Channel Mapping . 83
Event Reporting . 85
Monitoring Select Trunks . 85

Passive ISDN Functions . 85
Call Control Indications . 86

Application Notes -Group Call Information . 87
Application requests . 87

MT_CC_CALL_INFO Structure . 87
Channel Identification Structure . 88
Party Number Structure . 88
Sub_Address Structure . 89
SubAddrType . 89
OddEvenInd . 90
Call Identity Structure . 90

Channel Functions . 90
CallerID Control . 90
DTMF/MF and Tone Control . 91

Automatic Gain Control . 92
Recommended Gain Settings . 94
More Information about AGC . 95
Reducing Background Noise . 95
Activity Detection Control . 97

Global Channel Index Functions . 98
Board and Channel Numbering . 98
GCI Functions . 98

Media (IO Control) Functions . 99

Play/Record Functions . 100
Stereo Recording . 100
Energy Tagging . 101
Record Functions . 102
Data Streaming . 102

Activity Detection . 103
API Control . 105

Loop Voltage / Loop Current / Ring Detect Functions . 106
SmartWORKS LD Cards . 106

Firmware Functions . 108

Chapter 1
Welcome

AudioCodes, Inc.
SmartWORKS Developer’s Guide2 •
Legal Notice
No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written consent of AudioCodes USA, Inc.

Copyright © 2000 - 2008 AudioCodes USA, Inc. All rights reserved.

AudioCodes, and the AudioCodes logo are trademarks or registered trademarks of
AudioCodes, Inc.

Microsoft Windows is a registered trademarks of Microsoft Corporation.

All other trademarks or registered trademarks are the property of their respective
companies.

AudioCodes reserves the right to make changes to its products and specifications at
any time in order to improve on performance, manufacturing, or reliability.
Information furnished by AudioCodes is believed to be accurate. No responsibility is
assumed by
AudioCodes for the use of said information, nor for any infringement of patents or
of other third party rights that may result from said use. No license is granted by
implication or otherwise under any patent or patent rights of any Ai-Technology
Group.

About This Documentation
This document applies to the following AudioCodes products:

NOTE: Lead free boards are referenced by weight.

Product Name Part Number Weight Status

SmartWORKS VR3200 910-0303-001 Retired

SmartWORKS VR3209 910-0303-002 Maintenance

SmartWORKS VR6400 910-0301-001 Retired

SmartWORKS VR6409 910-0321-001 Maintenance

SmartWORKS AT409 910-0328-001 Retired

SmartWORKS AT809 910-0318-001 Retired

SmartWORKS AT1600 910-0309-001 Retired

SmartWORKS AT1609 910-0309-002 Retired

SmartWORKS DP3200 910-0308-001 Retired

SmartWORKS DP3209 910-0308-002 255 g Released

SmartWORKS DP6400 910-0304-001 Retired

SmartWORKS DP6409 910-0324-001 280 g Released

SmartWORKS DP3209-eh 910-0703-001 245 g Released (special
order only)

Welcome
About This Documentation

• 3
SmartWORKS DP6409-eh 910-0703-002 270 g Released (special
order only)

SmartWORKS NGX800 910-0314-001 204g Released

SmartWORKS NGX1600 910-0314-002 286 g Released

SmartWORKS NGX2400 910-0314-003 366 g Released

SmartWORKS MX80
(Expansion)

910-0315-001 68 g Released

SmartWORKS MX80A
(Expansion)

910-1315-001 60 g Released

SmartWORKS NGX800-eh 910-0700-001 208 g Released

SmartWORKS NGX1600-eh 910-0700-002 269 g Released

SmartWORKS NGX2400-eh 910-0700-003 208 g Released

SmartWORKS PT409 910-0307-002 Retired

SmartWORKS PT800 910-0305-001 Retired

SmartWORKS PT809 910-0320-001 Retired

SmartWORKS PT1600 910-0306-001 Retired

SmartWORKS PT1609 910-0319-001 Retired

SmartWORKS LD 101 910-0805-001 130 g Retired

SmartWORKS LD 409 910-0801-001 165 g Released

SmartWORKS LD 409H 910-0807-001 Released

SmartWORKS LD 809 910-0802-001 280 g Released

SmartWORKS LD 809X 910-0808-001 385 g Released

SmartWORKS LD 1609 910-0803-001 490 g Released

SmartWORKS LD 2409 910-0804-001 605 g Released

SmartWORKS LD 809-eh 910-0701-001 355 g Released (special
order only)

SmartWORKS LD 1609-eh 910-0701-002 460 g Released (special
order only)

SmartWORKS LD 2409-eh 910-0701-003 575 g Released (special
order only)

SmartWORKS DT3200 910-0312-001 Retired

SmartWORKS DT3209 910-0325-001 Maintenance

SmartWORKS DT6400 910-0313-001 Retired

SmartWORKS DT6409 910-0323-001 Maintenance

SmartWORKS DT6409TE 910-0323-002 275 g Released

Product Name Part Number Weight Status

AudioCodes, Inc.
SmartWORKS Developer’s Guide4 •
Value not available at time of document publication.

NOTE: Retired boards can no longer be purchased, but are still supported by
the SmartWORKS software.

This documentation is intended for the developer of CTI application software. This
manual assumes the reader is fairly proficient in standard C++ programming,
computer telephony and voice processing.

SmartWORKS DT3209TE 910-0325-002 Released

SmartWORKS DT3209TE-eh 910-0704-001 240 g Released (special
order only)

SmartWORKS DT6409TE-eh 910-0704-002 265 g Released (special
order only)

SmartWORKS PCM 3209 910-0330-001 Released (special
order only)

SmartWORKS PCM 6409 910-0329-001 270 g Released (special
order only)

SmartWORKS PCM 3209-eh 910-0702-001 265 g Released (special
order only)

SmartWORKS PCM 6409-eh 910-0702-002 240 g Released (special
order only)

SmartWORKS IPX 901-0331-001 Retired

SmartWORKS IPX-C 910-0331-007 250 g Released

Product Name Part Number Weight Status

Welcome
Release Update History

• 5
Release Update History
SMARTWORKS 3.11

IPX PBX Integrations: NEAX 2400 and Nortel Call Control support, H,.323, NGX PBX
Integrations: Mitel ICP 3300 and Harris 2020, New Features: Japanese Caller ID (LD
only), TCP re-ordering (IPX), Link Status and Network statistics (IPX)

SMARTWORKS 3.10

IPX PBX Integrations: NEAX 2400 Dchannel support, NGX PBX Integrations: Ascom
Ascotel (Vox & D-Channel) support, Siemens AC WIN D-Channel. New Features:
pciExpress boards, Caller ID per NTT Telephone Interface Service Edition 5, MAC
address has been added as station information (IPX only).

SMARTWORKS 3.9

IPX PBX Integrations: Siemens HiPath 4000, Alcatel OMNI PCX Enterprise 6.0, SIP.
NGX PBX Integrations: Rockwell Spectrum, Tadiran Coral, Aastra. New Features:
Enhanced IPX/IPX-C performance, required license with IPX-C, Energy Tagging, one
codeset 5 information element when tapping ISDN, multi-point BRI support with
the NGX.

SMARTWORKS 3.8

New board, IPX - C. Added DPNSS support on the SmartWORKS DP. Improvements
to MSI install. PBX Integrations - NGX: New Panasonic Multi-point phone support,
Alcatel OmniPCX beta DChannel support , Siemens Realitis iSDT(2W) Beta Vox
support, Siemens Realitis DTI(4W) Beta Vox support. New IPX Integrations: Beta SIP
support.

SMARTWORKS 3.7

New PBX integrations with the SmartWORKS IPX: Avaya (Call Control), Ericsson (Call
Control), Nortel (DChannel). New APIs used with the IPX: MTIpDChannelEventFil-
teringControl() and MTIpDChannelEventFilteringStatus(). The functionality of the
SmartWORKS IPX has been improved, refer to the release notes. Documentation
changes: New book - SmartWORKS Function Reference Library.

SMARTWORKS 3.6

Beta 2 support for the IPX board. New API, MTBoardGetCustomSwitchSetting().
The following support has been added on the SmartWORKS NGX: Beta support of
Intertel (Vox and Dchannel), Philips Sophos is supported with call control events
similar to NGX BRI event reporting, Nortel Meridian; 3820 & 3310 series phones are
now supported (Vox and Dchannel), Panasonic TDA 50; multi-point support has
been added with KXT-7600 series phones, NEC NEAX2400; F revision line card
support has been added with NEC I series phones, Astraa (EADS) Matra; MC420E
series phones are now supported (Vox and Dchannel), eOn eQueue.

SMARTWORKS 3.5

Added support for SmartWORKS PCM and LD809X boards. Beta support for new
PBXs: Panasonic (Vox and Dchannel), EADS 4-wire support, and a new line card is
supported with the Ericsson MD110.

SMARTWORKS 3.4

AudioCodes, Inc.
SmartWORKS Developer’s Guide6 •
D-channel support has been added for the following PBXs - LG Starex, Toshiba
Strata Dk , Toshiba Strata CTX

SMARTWORKS 3.3

Enhanced CPM, improved buffer handling with the MT_EVENT structure, Voice/
Answering Machine detection, G.726 MSB first.

SMARTWORKS 3.2

Secondary input control for Activity detection and DTMF tone detection , Plug and
Play, board clock synchronization, Flash firmware using APIs, and MSI support. Beta
release of LD409H and the LD2409.

SMARTWORKS 3.0

Windows NT is no longer supported. Windows 2003 Server 32 Bit support has been
added.

SMARTWORKS 2.10.0

SmartTERM DT6409TE, and DT 3209TE plus SmartTAP LD809 introduced to product
line. Features added: multi-processor support, board identification, a signal
profiling utility - SmartWORKS Profiler. See Release Notes for more information.

SMARTWORKS 2.9.0

Beta Release of LD 409. Support added for media format G.723.1. Support for
terminate ISDN (SmartTerm DT). See Release Notes for more information.

SMARTWORKS 2.7.0

Minor changes. See release notes.

SMARTWORKS 2.6.0

Added D-Channel support for SmartTAP NGX

SMARTWORKS 2.4.2

2nd Beta release of SmartTAP NGX

SMARTWORKS 2.4.0

Beta release of SmartTAP NGX. G.729A support added (VR6409, PT1609).

SMARTWORKS 2.3.7

Alpha and Early Adopter release of SmartTAP NGX

SMARTWORKS 2.3.6

Early Adopter release of NFAS functionality

SMARTWORKS 2.3.5

Beta release of Windows 2000 WDM driver

Welcome
Document Version Control

• 7
Early Adopter release of H.100 functionality

SMARTWORKS 2.3.4

Beta release of SmartTERM AT and DT

SMARTWORKS 2.3.2

Release of SmartTAP PT series

SMARTWORKS 2.3.0

Beta release of SmartTAP PT series

SMARTWORKS 2.2.0

Release of SmartTAP DP series

SMARTWORKS 2.0.0

Release of SmartDSP VR series

Document Version Control
The following has been added to this document since the last release:

Contacting AudioCodes USA
Your feedback is important to maintain and improve the quality of our products.
Use the information below to request technical assistance, make general inquiries,
or to provide comments.

TECHNICAL SUPPORT

For programming, installation, or configuration assistance, use the following
contact methods:

• Call technical support at 732.469.0880 or call toll free in the USA at
800.648.3647.

• For technical support log onto our online help system. Be sure to include a
detailed description of the problem along with PC configuration, AudioCodes
hardware, driver versions, firmware versions, a sample program that demon-
strates the issue, and any other pertinent information.

TABLE 1: VERSION CONTROL

Page Description

REV A

95, 96 Added note that MTSetGain() should not be used when
stereo recording.

REV B

95, 96 Clarified use of MTSetGain() and SetAGC() after
summation. If mixing disabled, then only primary input is
affected.

AudioCodes, Inc.
SmartWORKS Developer’s Guide8 •
To request an online help account please contact technical support at
 blade-support@audiocodes.com.

SALES AND GENERAL INFORMATION

For sales and general information, use the following contact methods:

• Call us at 732.469.0880 or toll free from the USA at 800.648.3647.

• Fax us at 732.469.2298.

• E-mail us at bladesinfo@audiocodes.com.

• Visit our web site at www.audiocodes.com/blades.

http://www.ai-logix.com

Welcome
Contacting AudioCodes USA

• 9
MAILING ADDRESS—USA

Ship packages or send certified mail to us at the following address:

AudioCodes USA, Inc.

27 World’s Fair Drive

Somerset, NJ 08873

AudioCodes, Inc.
SmartWORKS Developer’s Guide10 •

Chapter 2
SmartWORKS Overview

AudioCodes, Inc.
SmartWORKS Developer’s Guide12 •
SDK Overview
The SmartWORKS SDK is comprised of many files. These files, along with pertinent
product documentation, are installed when you use the SmartWORKS universal
installer CD that shipped with your product. Installation instructions are provided in
the SmartWORKS User’s Guide.

 SYSTEM REQUIREMENTS

Intel Pentium IV platform or equivalent 2 GHz running

Microsoft® Windows® 2000, (Service Pack 3 is required)
Microsoft® Windows® XP, (Service Pack 1 is required)
Microsoft® Windows® Server 2003 32-bit
Microsoft® Windows® Server 2008 32-bit
RedHat Enterprise Server 4.0 AS
RedHat Enterprise Server 4.0 ES
RedHat Enterprise Server 4.0 WS
Suse Enterprise Server 10 - x86
Suse Enterprise Desktop 10 -x86

For detailed system and hardware requirements on a per product basis, please refer
to the SmartWORKS User’s Guide.

DEVELOPER’S NOTES

MICROSOFT IDE DEBUG MODE

The following applies to the SmartWORKS SDK version 2.0.0 and older:

The Microsoft IDE does not detach applications from associated dynamic linked
libraries when Stop Debugging (Shift+F5) is requested. The termination of the
SmartWORKS DLL leaves the interface between the DLL and driver in unclosed
states. If the encode or decode interface is active at such a time, Windows crashes
because the hardware interrupt is not serviced. This only happens in Microsoft IDE
debug mode.

PREVENTING ERRORS DURING SHUTDOWN

When using SmartWorks version 3.2.3 or greater inside of a Windows service, the
following steps must be followed to prevent a system hang on shut down.

1. Upon initialization, the SERVICE_ACCEPT_SHUTDOWN flag must be specified in
order to tell the operating system to send the SERVICE_CONTROL_SHUTDOWN
notification. This is done during initialization of the service by setting the
SERVICE_ACCEPT_SHUTDOWN bit of the SERVICE_STATUS.dwControlsAccepted
field. This would be done in the CServiceModule::Init function of a Visual Studio
6.0 AppWizard based application:

m_status.dwControlsAccepted = SERVICE_ACCEPT_STOP | SERVICE_ACCEPT_SHUTDOWN;

2. The SERVICE_CONTROL_SHUTDOWN notification should be handled by setting
a SERVICE_STOP_PENDING status. This is to allow time for the SmartWorks DLL
to be properly shutdown. The default time of 20 seconds allocated to a service
to shutdown by the OS should be enough time for an MTSysShutdown() call to
complete. However, this time interval can be increased using the
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\WaitToKillService-

SmartWORKS Overview
SDK Overview

• 13
Timeout registry setting, or using the SERVICE_STATUS.dwWaitHint field when
setting the SERVICE_STOP_PENDING status.

3. Perform any and all cleaning up of the SmartWORKS DLL (MTSysShutdown()),
immediately after the CServiceModule::Run() function call in the ServiceMain
routine.

ENSURING THE SDK IS OPERATIONAL

CHECKING THE DRIVER STATUS

When the SmartWORKS driver is invoked, it searches for SmartWORKS cards. When
the card is successfully initialized, the CR17 LED is turned off and LEDs CR1 to CR16
are illuminated. (The CR number varies with each product. Refer to the User Guide
for the exact LED number). With a SmartWORKS DP card, the two trunk status LEDs
illuminate immediately after a successful board initialization.

When a SmartWORKS board fails initialization, the CR17 LED blinks, but the
SmartWORKS driver is loaded nonetheless. An Error message about the failure is
listed in the Windows Event Viewer under the Source name NtiDrv. These messages
will help AudioCodes technical support to locate the problem. NOTE: When using
Linux, all information is written to a ‘messages’ file located in the /var/log directory.

As each board is unique, the use of LEDs varies per SmartWORKS product. See the
User Guide guide for LED locations on all SmartWORKS products.

RUNNING THE SMARTVIEW DEMO APPLICATION

Running the SmartView demo program can help determine if the SmartWORKS
Driver/DLL has been properly loaded. To do this view the total number of channels
displayed in the SmartView application. If no channels appear, it is likely that the
SmartWORKS card is either not present, not supported, not initialized, or the driver
is not loaded.

SMARTCONTROL STATUS

Successful initialization of a SmartWORKS board can also be determined through
SmartControl. When a board fails to initialize the Board tab will be blank.

TROUBLESHOOTING DURING INSTALLATION

Trouble shooting information is provided on a per product basis in the
SmartWORKS User’s Guide.

SDK CONTENTS

When the SmartWORKS SDK is loaded onto a system, various applications and files
are copied onto the PC. This section explains what is installed when SmartWORKS is
installed.

APPLICATIONS

The following applications are installed when the SmartWORKS software is
installed:

AudioCodes, Inc.
SmartWORKS Developer’s Guide14 •
SmartView.exe

SmartView is a demonstration program that comes as part of AudioCodes'
SmartWORKS SDK. SmartView is capable of exercising most functions in the
SmartWORKS SDK and serves as a quick test tool for SmartWORKS API functions and
board status. SmartView can also aid during the installation and configuration of
any system in the field by providing a quick and simple test of basic functionality.

SmartControl.exe

SmartControl is a Windows Control Panel utility designed to retrieve and configure
the SmartWORKS operating environment. SmartControl works on system and
board level configurations. Channel-related configuration is offered through API
function calls. Tones, CPM tones, etc. are available through the SmartControl utility.

New configurations will not take effect until the driver is reloaded. It is
recommended that you always reload the driver to ensure that any changes
become effective.

SmartWF.exe

All SmartWORKS products (except the SmartWORKS NGX) use on-board flash
memory to store the DSP and CPU firmware. AudioCodes will release new versions
of this firmware from time to time and the user may want to update their boards.
The SmartWF utility is used to retrieve or update the flash image (.bin) of
SmartWORKS boards.

When using the SmartWF utility, you will see a complete list of all firmware options.
When using this tool you must select the correct firmware for your hardware. The
following naming convention is used to identify which firmware is required for each
board type:

For information on upgrading firmware, see the SmartWORKS Utilities Guide.

FOLDERS AND FILES

The following files, organized by folder, are copied onto the PC when SmartWORKS
is installed.

vr32_X.XX.X.X.bin

Board Name

Model Number

Release Number

SmartWORKS Overview
SDK Overview

• 15
Documentation

Release Notes

General notes about the release installed.

SmartWORKS User’s Guide

The universal user’s guide for the SmartWORKS family of products.

SmartWORKS Developer's Guide

The developer’s guide for the SmartWORKS SDK. This manual provides an overview
of the SmartWORKS SDK, theories of operation for the SmartWORKS product family,
and implementation instructions for SmartWORKS features.

SmartWORKS Function Reference Library

This document lists all function prototypes including all data structures, plus each
event code is documented.

SmartWORKS Utilities Guide

A user guide explaining each of the SmartWORKS utilities: SmartWF, SmartView,
SmartProfiler and the SmartControl panel.

NGX Integration Guide

Provides useful information about integrating the SmartWORKS NGX board with
proprietary PBXs in environments where D-channel is supported.

IPX Integration Guide

Explains VoIP recording and provides useful information about integrating the IPX
board with proprietary IP PBXs.

Product Quick Installs

Each product in the SmartWORKS family has its own Quick Install guide in PDF
format that walks you through the basic installation of the product.

Firmware

All board firmware files are stored here. Firmware files are also required for PBX
integration (SmartWORKS NGX board only). Refer to NGX installation instructions
for more information.

Inc

The following files are present in the Inc folder:

Programming Interface

These files comprise the primary interface to the SmartWORKS API.

NtiApi.h contains the prototypes for entry points in NtiDrv.dll, which is the interface
to the device driver.

NtiWFAPI.h declares the APIs used to flash firmware

NtiData.h and NtiEvent.h contain all data structures and event definitions. Both the
NtiData.h and the NtiEvent.h also have files specific to Call Control and D-Channel
support. For example: NtiDataCC.h and NtiDataDCC.h.

NtiErr.h contains all the possible return codes.

AudioCodes, Inc.
SmartWORKS Developer’s Guide16 •
Legends.h contains the declaration for the API interface. User applications should
include either windows.h or afxmt.h from the Microsoft Compiler before including
NtiAPI.h.

Miscellaneous Files

NtiAPINull.h lists APIs that are not supported by the current SmartWORKS API.

Obsolete.h lists APIs that have been obsoleted and are no longer supported.

ToBeDeleted... shows the APIs that are scheduled for deletion. Developers should
update their applications before these APIs are no longer supported.

SysLimits.h - defines SmartWORKs system limits

NV_WRAP.h - declaration for backward compatibility for NVDSP definitions

MS_Types.h - maps data types from Windows to Linux

NTI_NV.h - declares data structures that are not declared in the NtiData.h file,
required for backward’s compatability. Header file NTI_NV.h contains declarations
that are also present in the NV.h header for the AudioCodes NVDSP SDK. When
planning to use both the NVDSP and SmartWORKS SDKs, include NV.h first, define
NV_CO_RESIDE macro, and then include NtiAPI.h header.

MS_Wave.h - defines the Microsoft WAVE format, used only in Linux platform

Lib

Includes offset addresses for each function name that the DLL exports.

Samples

Sample code is provided to assist Developers integrate applications with
SmartWORKS boards.

DRIVERS

NtiWdmDrv.sys- the low-level interface between the application DLL and the
SmartWORKS hardware. The device driver provides the basic functionality for
managing all high-speed data I/O transfers with on-board resources.

The SmartWORKS driver must be installed before the user application can start.
When running Windows 2000, 2003, 2008 or XP, the drivers start automatically with
system startup.

NtiDrv.dll - A Dynamic Link Library (DLL) is provided as the primary interface
between the customer’s application and the AudioCodes driver. All APIs are
declared as dll export and use the __stdcall calling convention.

ENSURING USER APPLICATION COMPATIBILITY WITH THE SDK

The SmartWORKS API provides the capability of checking the version of the SDK
that the user application is compiled with and comparing it to the version of the
AudioCodes SDK that is currently running. These values are returned via a
SmartWORKS API. This can be accomplished at run time to protect the user
application from running on an older version of the SmartWORKS SDK.

In SDK header files, there is version information defined in file "SysLimits.h" as
VER_MAJOR, VER_MINOR, and VER_INTERNAL. The user application should be
written to hold these values.

SmartWORKS Overview
Architecture Overview

• 17
Then, at run time, the application can call for the SDK values on the SmartWORKS
boards. (Use API MTSysGetVersion()). If the returned values do not match the
values stored in the application the end user can be alerted of incompatible
software.

PLUG AND PLAY (PNP) CAPABILITIES

When the application is running, a newly initialized board can be recognized. When
this occurs, a system event is generated (EVT_SYS_BOARD_ADDED).

To use this feature, the user application must be collecting system events. Enable
this with the APIs MTSysWaitforEvent() or MTSysSetEventCallback(). Once the
event is generated it is recommended that the user application invoke the
MTGetSystemInfo() API to obtain board statistics. If multiple applications are
running, all applications should invoke this API to obtain board statistics.

Architecture Overview
All SmartWORKS series products are built around a core set of powerful DSP
algorithms. They also provide Industry standard codecs, echo cancellation,
automatic gain control, DTMF, MF, CID and activity detectors.

AudioCodes, Inc.
SmartWORKS Developer’s Guide18 •
THE SMARTWORKS CHANNEL MODEL

The figure below is a representative diagram of the SmartWORKS DSP channel
architecture. This is a logical representation of the voice resource channel found on
all SmartWORKS products. The diagram shows major functional blocks and how
they are interconnected. NOTE: The IPX does not support the channel model.

The following is a summary of the elements of the SmartWORKS Logical Channel
Model. Please refer to the SmartWORKS User’s Guide for a detailed explanation of
these elements per each SmartWORKS board.

TDM BUS

Each logical channel uses a TDM switch as a means of communicating with other
devices in the system. Each logical channel has three distinct connections to the
TDM switch: two inputs and one output. SmartWORKS products use the primary
input as the main source of voice data. The secondary input is used for call
recording applications where access to both sides of the conversation is required
(e.g. T1/E1 trunks).

Output

G

AVC

AGC

Signaling
and

Control

Mixing
enabler
switch

Tone
Generator

Decoders Encoders

Output
source

selector

Primary Input Secondary Input

DTMF, MF
ACT

Detectors

DTMF, MF
ACT

Detectors

Caller ID
& CPM

AGC AGC

TDM Switch

Host Computer Interface (PCI)

SmartWORKS Channel Model

SmartWORKS Overview
Architecture Overview

• 19
DTMF, MF, ACTIVITY DETECTION

Each logical channel has two sets of DTMF, MF and activity detectors, one for each
of the two voice data inputs. The primary input has an additional Caller ID detector
and Call Progress Monitor (CPM). The CPM has pre-programmed profiles for typical
call progress tones used in North America.

INPUT MIXER

Each logical channel has a two-way mixer that can be used to combine the Primary
and Secondary voice data inputs. These inputs are very useful when recording
digital trunks (T1 or E1) in which case the voice logger has to add (mix) both sides of
the conversation. Activity detection and DTMF/MF tone detection is configurable
on a per input basis.

AGC

Automatic Gain Control (AGC) optimizes voice data to facilitate a wide dynamic
range typically encountered when a voice logger is connected close to a PBX or
analog phone.

GAIN

A fixed gain stage is provided to adjust the overall amplitude of the received voice
data.

VOLUME

A fixed gain stage adjusts the overall amplitude of the transmit voice data.

AVC

Automatic Volume Control (AVC) adjusts playback levels of transmitted voice data,
which makes the listening volume more comfortable. Recorded data volume levels
are not affected.

LIVE MONITOR

A special signal path is provided which allows a user to monitor a recording in real
time. This feature allows incoming voice data to be routed to the TDM switch via the
output side of the logical channel. Here AVC and gain can be applied without
affecting the recorded signal.

ENCODERS/DECODERS

The SmartWORKS product line offers a wide range of voice encoders and decoders.
The selection of digitalization methods is user programmable on a per channel
basis.

HOST INTERFACE

The host interface is used to move voice data to and from the logical channel and
communicate control and event data. The host interface is a 33 MHz, PCI2.2
compliant bus.

TONE GENERATOR

Each logical channel has a programmable tone generator that can be used to play
tones to the TDM switch. User applications can generate standard DTMF tones of
programmable amplitude and duration.

AudioCodes, Inc.
SmartWORKS Developer’s Guide20 •
Board and Channel Numbering
PHYSICAL BOARD NUMBERING

When the SmartWORKS driver loads, it scans all PCI slots of the system to locate
AudioCodes boards. As the boards are located, the driver assigns Physical Board
Numbers to each. These board numbers are assigned sequentially from zero and
are linked to the address (or slot number) of the physical PCI slot the card is located
in.

An AudioCodes SmartWORKS board with the lowest address becomes Physical
Board 0. The board located in the PCI slot with the next higher address will become
Physical Board 1. This process is repeated until all PCI slots are scanned.

This PCI slot may or may not be the absolute lowest numbered PCI slot in the
system; it is simply the lowest in relation to the other PCI slots with boards inserted
into them. The PCI address or slot number is generally noted on the system
motherboard or passive back plane.

ADDING A NEW BOARD TO THE SYSTEM

When a new SmartWORKS board is added to an existing system, board numbering
MAY be impacted. This depends on the actual physical location of the new board
and the PC’s BIOS. Users are encouraged to monitor board and channel numbering
each time a system is restarted.

CONTROLLING BOARD NUMBERING

An API is available where users may control board numbering. Invoke
MTSetAdapterConfig() to control board presentation in the PresentationPreference
field.

BOARD AND CHANNEL NUMBERING

The SmartWORKS API supports up to 32 physical boards and/or up to 512 full
duplex channels within a system. The API functions refer to a specific board and or
channel within the system using one of two numbering schemes: physical board
numbers, and Global Channel Index (logical channel numbers). All board numbers
are assigned sequentially starting from zero. Channel numbers are assigned
sequentially starting from either 0 or 1 (depending on how the user has configured
this setting in the Smart Control panel).

Certain API functions will allow the developer to reference all boards
simultaneously by using the nBoard = -1.

GLOBAL CHANNEL INDEX

During initialization, as the Physical Boards are numbered, the SmartWORKS
software builds a list of the logical channels available in the system. This list is the
primary interface the API will use to refer to the channel resources in the system.

The Global Channel Index (GCI) specifies whether the channel list is numbered
sequentially from 0 or 1 (depending on how the user has configured this setting in
the Smart Control panel). Channel numbers are presented in ascending order of the
Physical Board numbers. The maximum number of channels supported by
SmartWORKS is 512.

SmartWORKS Overview
Board and Channel Numbering

• 21
Certain API functions will allow the developer to reference all channels
simultaneously by using the nChannel = -1 (if GCI index = 0) or nChannel = 0 (if the
GCI index = 1).

For Example:

Function MTSetEventCallback() takes channel number -1 or 0, and registers the
callback function for all available channels.

The API has several commands that can be used to determine the relationship
between the GCI and the physical channels on each board. The MTGetGCI() and
MTGetGCIMap() command will match a GCI indexed channel to its physical
board channel location.

For Example:

If GCI index = 0 and MTGetGCIMap(08, pBOARD, pBOARDTYPE, pGCI) returns
with *pBOARD=1, and *pGCI=0, this indicates GCI channel 08 resides on board 1
as its first channel. However, MTGetGCI(1,0,pGCI) should return with *pGCI=08.

DEFINITION OF NI, DR, AND CHANNEL

An NI can be either a digital network interface from T1/E1, or an analog network
interface from an analog interface card. A DR is the DSP resource on a SmartWORKS
card; SmartWORKS VR cards have either 32 or 64 DRs depending on the VR model. A
Channel is a DR paired with an NI, or a DR only, i.e. a SmartWORKS VR6400 has 64
channels. NOTE: The SmartWORKS IPX does not open with channels.

CHANNEL MAPPING

In SmartWORKS, a channel is a DR, preferably mapped with an NI if one exists.
Hence, a channel is indexed through its DR indexing. A channel mapping can also
be termed as adding NI to a channel, i.e. DR.

The relationship between one NI and one DR through the global timeslot is referred
to as Channel Mapping. In order to connect an NI with a DR, two global timeslots
are required: one for NI to transmit to and for DR to receive from, and one for DR to
transmit to and for NI to receive from.

Though SmartWORKS supports dynamic channel mapping, the flexibility of
mapping between NI and DR should include the following rules:

1)For NI from E1 with R2 signaling, the DR has to be on the same SmartWORKS card;

2)For NI from T1 with robbed-bit signaling, the DR has to be on the same
SmartWORKS card;

3)For NI from ISDN network, the DR can be on any SmartWORKS card controlled by
the same DLL/Driver;

Channel # C1

Channel # C2

TimeSlot y1

TimeSlot y2

TimeSlot x1

TimeSlot x2

NI #N1

NI #N2

DR #D1

DR #D2

AudioCodes, Inc.
SmartWORKS Developer’s Guide22 •
4)For NI from an analog network (e.g. analog interface card without any DSP
resources), the DR can only be assigned from a SmartWORKS VR card by the user of
the SmartWORKS API.

When a DR is not mapped with an NI, one local bus time slot is still allocated for this
DR. This is shown below.

CHANNEL CONNECTION

By the same token, the connection between two channels is illustrated in this
section.

First, the connection between two DR-only channels is shown.

Secondly, the connection between two NI-DR-paired channels. Note that the NI
paired DR will not have a transmit time slot assigned.

CT BUS TIMESLOT ALLOCATION

Although the SmartWORKS DLL/Driver may not have the knowledge of the system
view of the CT Bus time slot assignment, an effort is added to check that
SmartWORKS does not connect two transmits to one time slot.

SmartWORKS offers functions where the application user can directly assign the CT
Bus time slot to DR or NI. SmartWORKS VR also offers functions to connect channels
without the application user being concerned with CT Bus time slot.

Channel # C1

Channel # C2

TimeSlot y1

TimeSlot y2

TimeSlot x1

TimeSlot x2

NI #N1

NI #N2

DR #D1

DR #D2

Channel # C1

Channel # C2

TimeSlot y1

TimeSlot y2

TimeSlot x1

TimeSlot x2

NI #N1

NI #N2

DR #D1

DR #D2

Channel # C1

Channel # C2

TimeSlot y1

TimeSlot y2

TimeSlot x1

TimeSlot x2

NI #N1

NI #N2

DR #D1

DR #D2

SmartWORKS Overview
Board and Channel Numbering

• 23
SmartWORKS allocates its assigned CT Bus time slots during the following
situations:

1)Connecting channels across different SmartWORKS boards.

2)Connecting channels on the same SmartWORKS board if one of the channels has
a CT Bus time slot assigned and one of the channels does not.

DEFAULT MAPPING

SmartWORKS can be a resource or network card.

The SmartWORKS VR supports no NI interface and a channel contains DR only. With
SmartWORKS DP card, each channel is made of pairing NI to DR to the minimum of
these two. The number of NIs can be found through MTGetAdapterInfo() function.
Each NI can be indexed through a combination of board identification and NI
number. DRs are indexed through channel indexing.

AudioCodes, Inc.
SmartWORKS Developer’s Guide24 •

Chapter 3
API Overview

AudioCodes, Inc.
SmartWORKS Developer’s Guide26 •
API/DLL Structure
This section provides a high level view of the SmartWORKS API.

SMARTWORKS FUNCTION TYPES

IMMEDIATE AND BACKGROUND FUNCTIONS

SmartWORKS API functions are broken into two categories: Immediate and
Background.

IMMEDIATE FUNCTIONS

An Immediate API function is one that does not return until it is completed. This is
also referred to as a synchronous function.

BACKGROUND FUNCTIONS

A Background API function is one that is queued and will be completed when the
requested resource is available. Background functions are also referred to as
asynchronous as they respond with a return code before they are completed.

NOTE - For a complete listing of SmartWORKS return codes, see “Return
Codes” on page 49

There are several functions, such as playing a file or dialing a number, that do not
complete immediately. The API does not wait for this type of function to finish, but
returns immediately after the function is queued. The function will be executed
when the channel resource is available, hence, running in the background and
allowing the application to perform other tasks.

Only one background function per channel can be active at a time. Background
functions can be queued any time. Background functions are stopped or flushed
with the channel stop APIs: MTStopCurrentFunction() or MTStopChannel().

RESOURCE QUEUES

The SmartWORKS API supports three resource queues:

· Encode

· Decode

· DTMF collection queue

By definition, API functions that need access to the encode, decode, or DTMF queue
are background functions.

Any time a user application requests a value from the API, the following sequence
occurs:

1 · The application passes a data type pointer to the function.

2 · The API fills the referenced memory space with the value.

API Overview
API/DLL Structure

• 27
All API functions return a long integer describing the function’s execution status. It is
strongly suggested that the return value be checked to ensure successful operation.
The requested value can be guaranteed as valid only when the function is executed
successfully.

 PARAMETERS

The following section highlights the behavior of the API.

CHANGING SETTINGS

There are functions that change system and channel parameters on a per
application basis. These changes remain in effect until they are modified again by
the next call to that function. These functions usually require a pointer to a structure
with several parameters. Zero is a valid parameter value, and represents the default.

PRESERVE DATA BUFFER

For some functions like MTRecBuffer() or MTGetDigits(), the application needs to
pass the buffer pointer to the API and wait for the API to fill in the data buffer.
Because of this, the user application must preserve the data buffer until the
termination event is received. However, the user application does not need to
preserve the MT_IO_CONTROL structure until the termination event is received.
Once the API returns, the DLL maintains a copy of the MT_IO_CONTROL structure
for the API being called.

FUNCTION COMPLETION NOTIFICATION

Function completion notification events are broken into two categories: Overlapped
events and asynchronous callbacks.

OVERLAPPED EVENTS

Any API that ends with the suffix "Ex" uses the Windows overlapped mechanism as
its function completion notification mechanism.

User
Application

Data Type

Request

API
Function

Memory Space

AudioCodes, Inc.
SmartWORKS Developer’s Guide28 •
Take the play buffer function as an example. MTPlayBuffer() uses no notification
mechanism. The user application retrieves events from the event queue until it
encounters a playback specific event, which indicates completion of the
MTPlayBuffer() function.

API function MTPlayBufferEx() uses the overlapped mechanism. In this case the
user application provides an NT system event. DLL uses the signal when the
MTPlayBufferEx() function has completed. The user application should wait for the
signaling of the event and clear the event before it can be used again.

ASYNCHRONOUS CALLBACKS

Any API that ends with the suffix Async uses asynchronous callback as its
completion notification method.

API function MTPlayBufferAsync() requires a completion routine from the user
application. The SmartWORKS function completion routine mechanism is
implemented in the same fashion as a Windows system function completion. In
addition to the completion routine address, the application passes a parameter of
type LPARAM to the SmartWORKS DLL/Driver, which then passes the parameter
back, without change, to the user application when the function has completed.

NULL POINTER CHECKING

NULL pointers are not allowed in the SmartWORKS API. An error code of invalid
parameter (MT_RET_INVALID_PARAM) will be returned without executing the
requested API function.

For Example:

Entering a value of 0 for a pointer will be taken as a NULL pointer. No default
value will be assumed and the actual value you enter will be checked.
Though previous AudioCodes products did allow NULL Pointers, the
SmartWORKS SDK does not.

NOTE: For backwards compatability with older AudioCodes products, the
LENGTH parameter for Set APIs allows the SDK to set up to the specified
size. The rest of parameters are not changed. MT_RET_OK is returned.

RETURN CODES

All API functions respond with a return code indicating the status of the function’s
completion. All return codes are of type MT_RESULT.

For an immediate API function, the return code MT_RET_OK indicates that the
API has been completed successfully.

For a background API function, the return code MT_RET_IO_PENDING indicates
that the API task has been successfully queued for execution when a resource
becomes available.

NOTE: All return codes are passed to the user application as a hex value. To obtain a
text desciption use the API MTGetReturnCodeDescription().

API Overview
UNICODE Support

• 29
EVENT CONTROL

Each channel has a FIFO buffer or event queue, which is used to temporarily store
asynchronous messages from the board. These messages, or events, are used to
indicate channel status information such as line signaling, voice activity, or errors.
The event queue for each channel can store up to 64 messages. Regardless of which
method is used, the user application is responsible for monitoring the channel
status often enough to ensure that it does not overflow. If the event queue is full
new events are lost and are reported in the Windows Event Viewer. NOTE: When
using Linux, all information is written to a ‘messages’ file located in the /var/log
directory.

There are two methods the application can use to retrieve a channel’s events: event
queuing, and call backs. The next chapter explains each method and provides a
sample.

UNICODE Support
SmartWORKS provides UNICODE support under Microsoft Windows® in the
following manner:

If UNICODE is defined in the user application, API functions that require a string
parameter as input or output will use the PCWSTR definition for the string instead of
the normal PCSTR definition. Following is a code segment from the ntiapi.h header
file which shows how this functionality has been implemented.

#ifdef UNICODE
#define MTCallString MTCallStringW
#else
#define MTCallString MTCallStringA
#endif /* !UNICODE */

The definitions for the functions above are as follows:

MT_RESULT MTCallStringA(const CHANNEL nChannel,
PCSTR pCall_string,
const PMT_IO_CONTROL pIoCtl);

MT_RESULT MTCallStringW(const CHANNEL nChannel,
PCWSTR pCall_string,
const PMT_IO_CONTROL pIoCtl);

The following table shows how SmartWORKS maps the APIs depending on whether
UNICODE has been defined for the user application. If UNICODE is defined,
SmartWORKS will call the API with a ‘W’ suffix. If UNICODE is not defined,
SmartWORKS will call the API with an ‘A’ suffix.

TABLE 2: UNICODE/NON-UNICODE FUNCTION TABLE

Function UNICODE not defined UNICODE defined

MTCallString() MTCallStringA() MTCallStringW()

MTCallStringAsync () MTCallStringAsyncA() MTCallStringAsyncW()

MTCallStringEx() MTCallStringExA() MTCallStringExW()

MTDialString() MTDialStringA() MTDialStringW()

AudioCodes, Inc.
SmartWORKS Developer’s Guide30 •
MTDialStringAsync() MTDialStringAsyncA() MTDialStringAsyncW()

MTDialStringEx() MTDialStringExA() MTDialStringExW()

MTGetLastError() MTGetLastErrorA() MTGetLastErrorW()

MTRecFile() MTRecFileA() MTRecFileW()

MTRecFileEx() MTRecFileExA() MTRecFileExW()

MTRecFileAsync() MTRecFileAsyncA() MTRecFileAsyncW()

MTPlayFile() MTPlayFileA() MTPlayFileW()

MTPlayFileEx() MTPlayFileExA() MTPlayFileExW()

MTPlayFileAsync() MTPlayFileAsyncA() MTPlayFileAsyncW()

MTPlayIndex() MTPlayIndexA() MTPlayIndexW()

MTPlayIndexEx() MTPlayIndexExA() MTPlayIndexExW()

MTPlayIndexAsync() MTPlayIndexAsyncA MTPlayIndexAsyncW

TABLE 2: UNICODE/NON-UNICODE FUNCTION TABLE

Function UNICODE not defined UNICODE defined

API Overview
Media Formats

• 31
Media Formats
SmartWORKS supports the following media formats:

*Supports WAV headers
**Not supported on the NGX
+ Stereo Recording - Users must disable mixing on channel inputs
Digital tapping only

WAVE FILE SUPPORT

The SmartWORKS API supports Microsoft wave headers. Setting the appropriate
flag in the MT_IO_CONTROL.StartControl data structure controls the inclusion of a
header or data chunk descriptor in the media file.

WAVE_RIFFFMTDATA_CHUNK

add wave header of RIFF chunk, Fmt chunk, and
Data chunk

WAVE_DATACHUNK_ONLY

add data chunk descriptor only

For example, when format MT_MSGSM (Microsoft GSM) is selected without either of
the above flags, no wave chunk descriptor will be added in front of the first 65-byte
GSM packet.

SmartWORKS Compatible CODECs

µ-law 8-bit PCM 64 k bps

A-law 8-bit PCM 64 k bps

µ-law PCM+ (recording only)

A-law PCM+ (recording only)

Linear signed 8-bit PCM 64 k bps

Linear unsigned 8-bit PCM 64 k bps *

Linear signed 16-bit PCM 128 k bps *

Linear unsigned16-bit PCM 128 k bps

Linear signed, 6 Khz, 16-bit PCM, 96 k bps

GSM 6.10 13 k bps

Microsoft GSM 13 k bps *

Dialogic (Oki) ADPCM 24 k bps

Dialogic (Oki) ADPCM 32 k bps

G.723.1 5.3 kbps

G.723.1 6.3 kbps**

G.729A 8 kbps

G.726 ADPCM

G.726 ADPCM 16, 24, 32, 40 kbps MSB

µ-law 8-bit PCM 64 k bps, with energy tagging#

A-law 8-bit PCM 64 k bps, with energy tagging#

G.723.1 5.3 kbps, with energy tagging#

AudioCodes, Inc.
SmartWORKS Developer’s Guide32 •

e Size in
If flag WAVE_RIFFFMTDATA_CHUNK is set, a GSM wave header will be added before
the first GSM voice packet.

If flag WAVE_DATACHUNK_ONLY is set, then an 8-byte long Data chunk descriptor
will be added before the first GSM packet. Flag WAVE_RIFFFMTDATA_CHUNK
implies flag WAVE_DATACHUNK_ONLY.

SmartWORKS currently supports WAVE 8-bit and16-bit LINEAR plus WAVE Microsoft
GSM.

In functions for streaming and device IO, wave headers are not supported.
MT_RET_INVALID_PARAM will be returned if either WAVE_RIFFFMTDATA_CHUNK
or WAVE_DATACHUNK_ONLY are specified when invoking streaming or device IO
functions. Use MakeWaveGSMHeader() and MakeWavePCMHeader() to insert
headers when desired.

WAVE FILE PLAYBACK

The MTPlayFile() function can playback files with a .wav header that were recorded
with the SmartWORKS SDK. AudioCodes does not guarantee that files with .wav
headers generated by other recorders will be processed correctly by the
SmartWORKS SDK. Files packaged by another system may contain data in the
header that our SDK does not support. For example, the SmartWORKS SDK cannot
play files that contain information in the FACT section of the header. Also, files that
contain data chunk elements throughout the file do not playback correctly. Only
the first header (or data chunk) is processed. From here the SmartWORKS SDK plays
the file until end of file is reached.

MEDIA FORMAT NAMING

The supported voice media formats are defined with an MT_ prefix and can be
found in NtiData.h.

Voice Format Bits/sec. Description
 Fram
Bytes

MT_PCM_uLaw
MT_PCM

64000 µ-law 8 bit PCM 160

MT_PCM_ALaw 64000 A-law 8 bit PCM 160

MT_PCM_Raw_8bit
MT_PCM_Linear_8bit

64000 Linear 8 bit PCM, signed 160

MT_PCM_Raw_u8bit
MT_PCM_Linear_u8bit

64000 Linear 8 bit PCM, unsigned 160

MT_PCM_Raw_16bit
MT_PCM_Linear_16bit
MT_Linear

128000 Linear 16 bit PCM, signed 320

MT_PCM_Raw_u16bit
MT_PCM_Linear_u16bit

128000 Linear 16 bit PCM, unsigned 320

MT_PCM_Raw6k_16bit
MT_PCM_Linear6k_16bit

96000 Signed Linear 6 KHz 16-bit PCM 240

MT_PCM_µLaw_Stereo 128000 µ-law 8 KHz 8-bit stereo PCM (record only) 320

MT_PCM_ALaw_Stereo A-law 8KHz 8-bit stereo PCM (record only) 320

MT_OKI_ADPCM_SR8 32000 Dialogic ADPCM 8 KHz sample rate 80

MT_OKI_ADPCM_SR6 24000 Dialogic ADPCM 6 KHz sample rate 60

API Overview
Media Formats

• 33

 ms frames)

 ms frames)

 ms frames)

 ms frames)

 ms frames)

 ms frames)

 ms frames)

 ms frames)

 ms frames)

 ms frames)

 ms frames)

 ms frames)

0 ms frames)

0 ms frames)

0 ms frames)

 ms frames)

 ms frames)

 ms frames)

 ms frames)

 ms frames)

 ms frames)

 ms frames)

 ms frames)

 ms frames)

0 ms frames)

0 ms frames)

0 ms frames)

0 ms frames)

0 ms frames)

 ms frames)

e Size in
*Decode Only
#Encode only

MT_G729_8K* 8000 G.729 20

MT_G729A_8K 8000 G.729A 20

MT_GSM610 13000 GSM 6.10 33

MT_MSGSM 13000 Microsoft GSM 65 (40

MT_G723_DOT1_5300_FIX 5300 G.723.1 fixed rate 5.3 K 20 (30

MT_G723_DOT1_6300_FIX 6400 G.723.1 fixed rate 6.3 K 24 (30

MT_G726_16K 16000 G.726 16K bps 40 (20

MT_G726_16K_µlaw* 16000 G.726 16K bps for µ-law 40 (20

MT_G726_16K_Alaw* 16000 G.726 16K bps for A-law 40 (20

MT_G726_24K 24000 G.726 24K bps 60 (20

MT_G726_24K_µlaw* 24000 G.726 24K bps for µ-law 60 (20

MT_G726_24K_Alaw* 24000 G.726 24K bps for A-law 60 (20

MT_G726_32K 32000 G.726 32K bps 80 (20

MT_G726_32K_µlaw* 32000 G.726 32K bps for µ-law 80 (20

MT_G726_32K_Alaw* 32000 G.726 32K bps for A-law 80 (20

MT_G726_40K 40000 G.726 40K bps 100 (2

MT_G726_40K_µlaw* 40000 G.726 40K bps for µ-law 100 (2

MT_G726_40K_Alaw* 40000 G.726 40K bps for A-law 100 (2

MT_G726_16K_MSb_1st 16000 G.726 16K bps MS-bit first 40 (20

MT_G726_16K_µlaw_MSb_1st* 16000 G.726 16K bps for µ-law MS-bit first 40 (20

MT_G726_16K_Alaw_MSb_1st* 16000 G.726 16K bps for A-law MS-bit first 40 (20

MT_G726_24K_MSb_1st 24000 G.726 24K bps MS-bit first 60 (20

MT_G726_24K_µlaw_MSb_1st* 24000 G.726 24K bps for µ-law MS-bit first 60 (20

MT_G726_24K_Alaw_MSb_1st* 24000 G.726 24K bps for A-law MS-bit first 60 (20

MT_G726_32K_MSb_1st 32000 G.726 32K bps MS-bit first 80 (20

MT_G726_32K_µlaw_MSb_1st* 32000 G.726 32K bps for µ-law MS-bit first 80 (20

MT_G726_32K_Alaw_MSb_1st* 32000 G.726 32K bps for A-law MS-bit first 80 (20

MT_G726_40K_MSb_1st 40000 G.726 40K bps MS-bit first 100 (2

MT_G726_40K_µlaw_MSb_1st* 40000 G.726 40K bps for µ-law MS-bit first 100 (2

MT_G726_40K_Alaw_MSb_1st* 40000 G.726 40K bps for A-law MS-bit first 100 (2

MT_PCM_uLaw_POWER# 64000 µ-law 8 bit PCM, with energy tagging 160 (2

MT_PCM_ALaw_POWER# 64000 A-law 8 bit PCM, with energy tagging 160 (2

MT_G723_DOT1_5300_FIX_POWER# 5300 G.723.1 fixed rate 5.3 K 20 (30

Voice Format Bits/sec. Description
 Fram
Bytes

AudioCodes, Inc.
SmartWORKS Developer’s Guide34 •
MF Detection
Each channel on SmartWORKS products has two sets of MF detectors. One set is
connected to the primary input, the other is connected to the secondary input.
There are two types of MF digits: R1 and R2. These digits are part of different
signaling systems and in all practicality user applications will work with either R1 or
R2 digits, but not both at the same time, hence there is only one MF digit queue.
The API allows selection between R1 and R2 digit detection.

R1 MF DIGITS

In this document we will refer to R1 as defined by CCITT (now ITU) in CCITT
Recommendation Q.151, vol.VI, Geneva 1980. MF R1 digits are designed as
combinations of 2 out of 7 frequencies, beginning with 700Hz and separated by
200Hz.

The table below shows the 15 MF R1 digits and the frequencies corresponding to
each digit:

R2 MF DIGITS

R2 digits referred to here were defined by CCITT (now ITU) in CCITT
Recommendation Q.441, vol.VI, Geneva 1980. There are 15 digits called forward
digits and 15 digits called backward digits. Forward digits are transmitted from
Central Office (CO) to Customer Premises Equipment (CPE). Reverse digits are
transmitted from CPE to CO. The forward digits are designed as combinations of
two out of set of six frequencies: 1380, 1500, 1620,1740, 1860, and 1980 Hz. The
backward digits are designed as a combinations of two out of six frequencies
different then the forward set: 540, 660, 780, 900, 1020 and 1140 Hz

R1 Digit
Lower
Frequency (Hz)

Higher
Frequency (Hz)

API Code

1 700 900 0x01

2 700 1100 0x02

3 900 1100 0x03

4 700 1300 0x04

5 900 1300 0x05

6 1100 1300 0x06

7 700 1500 0x07

8 900 1500 0x08

9 1100 1500 0x09

0 1300 1500 0x0A

Code 11 700 1700 0x0B

Code 12 900 1700 0x0C

KP1 1100 1700 0x0D

KP2 1300 1700 0x0E

ST 1500 1700 0x0F

API Overview
MF Detection

• 35
The table below shows frequency composition of each forward digit (values in
italics are optional):

The table below shows fequency composition of each backward digit (values in
italics are optional).

R2 Digit
(Forward)

Lower
Frequency (Hz)

Higher
Frequency (Hz)

API Code

1 1380 1500 0x01

2 1380 1620 0x02

3 1500 1620 0x03

4 1380 1740 0x04

5 1500 1740 0x05

6 1620 1740 0x06

7 1380 1860 0x07

8 1500 1860 0x08

9 1620 1860 0x09

10 1740 1860 0x0A

11 1380 1980 0x0B

12 1500 1980 0x0C

13 1620 1980 0x0D

14 1740 1980 0x0E

15 1860 1980 0x0F

R2 Digit
(Backward)

Lower
Frequency (Hz)

Higher
Frequency (Hz)

API Code

1 1020 1140 0x11

2 900 1140 0x12

3 900 1020 0x13

4 780 1140 0x14

5 780 1020 0x15

6 780 900 0x16

7 660 1140 0x17

8 660 1020 0x18

9 660 900 0x19

10 660 780 0x1A

11 540 1140 0x1B

12 540 1020 0x1C

13 540 900 0x1D

14 540 780 0x1E

15 540 660 0x1F

AudioCodes, Inc.
SmartWORKS Developer’s Guide36 •
Board Type Naming
AudioCodes SmartWORKS boards are defined in NtiData.h as follows:

TABLE 3: BOARD TYPE NAMING

Board Name Actual Product Name Description

DT3209_T1_CARD SmartWORKS DT3209 24 channel T1 terminate card
G729A-compatible

DT3209_E1_CARD SmartWORKS DT3209 30 channel E1 terminate card
G729A-compatible

DT6409_T1_CARD SmartWORKS DT6409 48 channel T1 terminate card
G729A-compatible

DT6409_E1_CARD SmartWORKS DT6409 60 channel E1 terminate card
G729A-compatible

DT3209TE_T1_CARD SmartWORKS DT3209 24 channel T1 terminate card
G729A-compatible

DT3209TE_E1_CARD SmartWORKS DT3209 30 channel E1 terminate card
G729A-compatible

DT6409TE_T1_CARD SmartWORKS DT6409 48 channel T1 terminate card
G729A-compatible

DT6409TE_E1_CARD SmartWORKS DT6409 60 channel E1 terminate card
G729A-compatible

DP3209_T1_CARD SmartWORKS DP3209 24 channel T1 high impedance call logging
card, G729A-compatible

DP3209_E1_CARD SmartWORKS DP3209 30 channel E1 high impedance call logging
card, G729A-compatible

DP6409_T1_CARD SmartWORKS DP6409 48 channel T1 high impedance call logging
card, G729A-compatible

DP6409_E1_CARD SmartWORKS DP6409 60 channel E1 high impedance call logging
card, G729A-compatible

NGX_CARD SmartWORKS NGX 8 channel modular digital station tap base
card

MX80 8 channel expansion for SmartWORKS NGX

ANALOG_LD409 SmartWORKS LD 409 4 channel high/low impedance analog call
logging card

ANALOG_LD409H SmartWORKS LD 409h 4 channel high/low impedance analog call
logging card with H.100 bus

ANALOG_LD809 SmartWORKS LD 809 8 channel high/low impedance analog call
logging card with H.100 bus

ANALOG_LD809X SmartWORKS LD 809X 8 channel high/low impedance analog call
logging card with H.100 bus

ANALOG_LD1609 SmartWORKS LD 1609 16 channel high/low impedance analog call
logging card with H.100 bus

ANALOG_LD2409 SmartWORKS LD 24 channel high/low impedance analog call
logging card with H.100 bus

PCM6409_32T_CARD SmartWORKS PCM 6409 dual port terminate card with PCM option

API Overview
Board Type Naming

• 37
PCM3209_32T_CARD SmartWORKS PCM 3209 single port terminate card with PCM option

TABLE 3: BOARD TYPE NAMING

Board Name Actual Product Name Description

AudioCodes, Inc.
SmartWORKS Developer’s Guide38 •
Windows Event Viewer
Following is a list of events that may appear in the Windows Event Viewer. Each
listing has a description of the event next to it. This is not an exhaustive list of
Windows events, only a list of SmartWORKS-specific events.

NOTE: When using Linux, all information is written to a ‘messages’ file
located in the /var/log directory.

In the first table is a list of events stemming from the NtiDrv.sys, the SmartWORKS
Driver. Driver issues can be Hardware, Firmware, or Firmware/Driver incompatibility
issues.

TABLE 4: WINDOWS EVENT MESSAGES FROM NTIDRV.SYS

Event Message Description

Error locating SmartWORKS hardware At least one SmartWORKS board needs to be
present (hardware problem: no recognizable
board)

Hardware initialization timed out for brd # Board # initialization timed out (Firmware
problem: firmware unable to finish initialization)

Unsupported hardware detected for brd # Board # format ID error (hardware problem:
setup error)

Incompatible (V#.#.# and up required) FW on brd # Old firmware on board # (Firmware-driver
incompatibility problem: need to update
firmware to specified version)

Board PANIC code at 0x10 for brd # Board # firmware runs into problem (code at
0x10), contact AudioCodes (firmware problem)

SmartWORKS driver loaded nevertheless Driver loaded in spite of the error, LED CR17
flashing (probable follow up message to errors
2-5)

SmartWORKS driver loaded Driver loaded successfully (if no errors-normal)

SmartWORKS driver unloaded Driver unloaded (if no errors-normal)

API Overview
Windows Event Viewer

• 39
The next list of event messages stem from the NtiDrv.dll, the SmartWORKS API. API
issues can be API, Application, Firmware, or Hardware issues.

With the occurrence of any other error, call AudioCodes.

TABLE 5: WINDOWS EVENT MESSAGES FROM NTIDRV.DLL

Event Message Description

MVIP not specified MVIP not selected in SmartControl

Clear MUX Timed out Start MUX timed out [API function time-
out MTStartMUX()]

Clear MUX on channel # Timed out Start MUX on channel # timed out [API
function time-out
MTStartMUXOnChannel(#)]

Init MUX Timed out Stop MUX timed out [API function time-
out MTStopMUX()]

Init MUX on channel # Timed out Stop MUX on channel # timed out [API
function MTStopMUXOnChannel(#) has
timed out]

Event Callback for Ch # dropped due to queue full Event callback on channel # dropped
(System problem: Event Callback queue
full-contact AudioCodes)

Completion Callback for Ch # dropped due to queue full Completion callback on channel #
dropped (System problem: Completion
Callback queue full-contact AudioCodes)

Ch # timed out StreamBufIn Streaming in error on channel #
(API error: contact AudioCodes)

Ch # timed out StreamBufOut Streaming out error on channel #
(API error: contact AudioCodes)

Brd # event 0x1234 dropped due to queue full Board # event 0x1234 dropped
(Application error: must clear event
queue)

Ch # event 0x5678 dropped due to queue full Channel # event 0x5678 dropped
(Application error: must clear event
queue)

DLL attached error status 0xabcd SmartWORKS API load failed with code
0xabcd

DLL detached successfully SmartWORKS API unloaded successfully
(Normal)

DLL detached error status 0xabcd SmartWORKS API unload failed with code
0xabcd

NTI DLL attached with maximum log count set to 100 SmartWORKS API loaded successfully
(Normal)

AudioCodes, Inc.
SmartWORKS Developer’s Guide40 •

Chapter 4
Writing An Application

42 •
AudioCodes, Inc.
SmartWORKS Developer’s Guide
Getting Started
This section provides basic information about writing an application with the
SmartWORKS API.

IMPORTANT NOTE FOR LINUX DEVELOPERS

When running the Linux it is important that the user’s application run as root user.
The following information shows the command required for each application to run
as root user.

1) Log in as root;

2) Make sure that the ownership of the application is root (or super user). Or, use
command 'chown root application' to change it to root;

3) use command 'chmod +s application' to add run time superuser privilege to this
application;

4) Log out.

Writing An Application
Getting Started

• 43
SMARTWORKS FLOWCHART

Each application written for SmartWORKS follows the same basic processing
scheme. The following flowchart depicts this flow control.

Applications usually start with
MTGetSysInfo() to refresh
information about system

resources.

Next, resources are reserved by
the application using

MTSysStartup(), MTOpenBoard(),
or MTOpenChannel().

Callback should be established
with MTSetCallback() at this point,

so that the applciation can be
notified with events as they occur.

Following Callback, the TDM Bus
should be verified for errors (if
any) with MTArmCTAlarm()

Optional:
If TDM routing is desired, it
should be configured now.

Next, the MT_IO_CONTROL
Structure should be configured to
manage the recording criteria (by
Activity Detection, by Caller ID,
etc.), recording medium, etc.

When the previous steps are
complete, the system is ready for
activity. The application should

call a Media API (e.g.
MTRecFile()) to record data
based on the criteria in the

MT_IO_CONTROL structure.

Does the
MT_IO_CONTROL
structure provide

instruction for when to
Stop Recording?

At this point, various commands
can be used to release resources.
MTSysShutdown() will release all

system resources.

NO

If NO,
MTStopChannel() or

MTStopCurrentFunction()
can be called to stop

 recording.

YES

(Note that once
channels are open
and the MUX has
been started on

them, new channels
opened are not

recognized by the
MUX. Stopping and

starting the MUX
again will reset all
channels. To avoid

this and append
channels to the
application, use

MTOpenChannel() to
open a new channel,

and
MTStartMUXOnCha
nnel() to activate the
MUX on that channel
without interrupting
previously opened

channels.)

44 •
AudioCodes, Inc.
SmartWORKS Developer’s Guide
Event Control
Three type of events are generated by AudioCodes boards: board events, channel
events and system events.

NOTE: A detailed description of each event is available in the SmartWORKS
Function Reference Library.
Each channel has a FIFO buffer or event queue, which is used to temporarily store
asynchronous messages. These messages, or events, are used to indicate channel,
board or system status information such as line signaling, voice activity, or errors.
The event queue for each channel can store up to 64 messages. Regardless of which
method is used, the user application is responsible for monitoring the channel
status often enough to ensure that it does not overflow. If the event queue is full
new events are lost and are reported in the Windows Event Viewer. NOTE: When
using Linux, all information is written to a ‘messages’ file located in the /var/log
directory.

With event queuing, the application can pull the messages off of the queue by
calling MTWaitForChannelEvent() in a polling routine. All event queue messages
must be pulled out of the FIFO in order to keep it from overflowing. Many of the
messages can be ignored if they are not important to the application.

The second and preferred method of reading the event queue is to use a call back
function. A call back function will be invoked by any event or by a specific event.
When a callback function is invoked, events are passed as parameters. There is no
need to call MTWaitForChannelEvent().

Following is a list of Event Information and Control API functions:

FULL EVENT QUEUE

TABLE 6: EVENT INFORMATION AND CONTROL
MTClearBoardEventCallback()

MTClearEventCallback()

MTClearPriorityEventCallback()

MTEventControl

MTFlushEvents()

MTGetChannelEvent()

MTGetEventFilters()

MTPutChannelEvent()

MTSetBoardEventCallback()

MTSetEventCallback()

MTSetEventFilters() (prev. MTSetEvents)

MTSetPriorityEventCallback()

MTSysSetEventCallback()

MTSysClearEventCallback()

MTSysWaitForEvent()

MTWaitForAdapterEvent()

MTWaitForChannelEvent() (prev. MTWaitFor-
Event)

Writing An Application
Event Control

• 45
When events are dropped due to a full event queue, the message ch n event 0xAB
dropped due to full queue will be posted through the Windows Event viewer, where n
is the channel number and 0xAB is the event code. NOTE: When using Linux, all
information is written to a ‘messages’ file located in the /var/log directory.

POLLING

The function MTWaitForChannelEvent() is used to get the first queued event. The
application passes a pointer to an empty MT_EVENT structure. If an event is
available, the DLL fills the event structure with information such as time stamp,
event code, or extended sub-reason codes. Should there be no event queued; the
DLL waits for either the expiration of the specified time-out period or the arrival of a
new event. Some common events that are unimportant to a specific channel can be
disabled so that the events are never queued for that channel. Function
MTSetEventFilters() uses a bit field to enable or disable a number of common
events.

Events with Extra Information

Some events, such as call control, EVT_CC_ events, pass over extra information to
the user application. The field ptrBuffer is set by the SmartWORKS DLL to identify the
buffer holding the extra information. The SmartWORKS DLL allocates a buffer to
hold this data. After the data is retrieved, the user application must invoke
MTReturnEventBuffer() to return this buffer.

As of release 2.8, events that are generated with extra information are handled
differently by the DLL. To enable this feature use MTSetSystemConfig() and set the
field CompileWithSDK to a value that is greater than 0x02086600. Now the user
application is required to allocate a buffer for this extra information. Use the
ptrXtraBuffer field to identify the pointer for the extra information, and the
XtraBufferLength field to set the length of the buffer. If these fields are not set by the
user application, the extra data is not provided to the user application.

When data is returned to the user application, the SmartWORKS DLL sets the
XtraDataLength field with the actual data length returned to the user application. If
the actual length of data is larger than the allocated buffer, the data is truncated
and a flag in Bit 2 of the EventFlag field is set to 0x00000004.

The following is an example of a basic Polling method:

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <NTiAPI.H>

int main(int argc, char *argv[])
{

int totalChannels;
MT_RESULT r;
int chan =1;//this assumes GCI index = 1
MT_EVENT event;
int Code, Reason;
char callerIDBuf[128];
MTSYS_INFO sysInfo;
r=MTSysStartup();

46 •
AudioCodes, Inc.
SmartWORKS Developer’s Guide
if(r!=MT_RET_OK)
{
printf(“MT system failed to start”);
return 1;
}
ULONG size = sizeof(sysInfo);
r=MTGetSystemInfo(&sysInfo,&size);
if(r==MT_RET_OK)
totalChannels=sysInfo.NumChans;
else
{
printf("MTGetSystemInfo failed...\n");
return 1;
}

while (1)
{
// Note: MTWaitForChannelEvent may reset your size to 0
// if there is no event, therefore set the size everytime
// before calling MTWaitForChannelEvent
size = sizeof(event);
r=MTWaitForChannelEvent(chan,10,&event,&size);
if(r==MT_RET_OK)
{
Code = event.EventCode;
Reason = event.SubReason;

switch (Code)
{
case EVT_CALLID_STOP:
r=MTGetCallerID(chan, 128, callerIDBuf);
printf("Ch. %d Caller ID length %d data '%s'",
chan, strlen(callerIDBuf), callerIDBuf);
break;

case EVT_CALLID_DROPPED:
printf("Ch. %d Caller ID dropped ", chan);
break;

case EVT_MAX_SILENCE:
break;

case EVT_MAXTIME:
break;

case EVT_MAXBYTES:
break;

case EVT_MAXDIGITS:
break;

case EVT_DIGIT:

Writing An Application
Event Control

• 47
break;

case EVT_EOF:
break;

case EVT_RINGS:
break;
}
}

chan++;
if (chan >totalChannels)
chan =1;

}
return 0;
}

CALL BACK FUNCTION

The second and preferred method of reading the event queue is to use a call back
function. A call back function must be registered with the SmartWORKS API by the
application and will be invoked when the specified event occurs. When a call back
function is invoked, events are passed as parameters back to the application. A call
back function does not require the application to poll for events.

Events with Extra Information

Some events, such as call control, EVT_CC_ events, pass over extra information to
the user application. The field ptrBuffer is set by the SmartWORKS DLL to identify the
buffer holding the extra information. The DataLength field is used to identify the
size of the buffer. When event information is retrieved, the user application must
invoke MTReturnEventBuffer() to release the buffer.

As of release 2.8, events that are generated with extra information are handled
differently by the DLL. To enable this feature use MTSetSystemConfig() and set the
field CompileWithSDK to a value that is greater than 0x02086600. In this scenario,
the field ptrXtraBuffer is set by the SmartWORKS DLL to identify the buffer holding
the extra information and the XtraBufferLength indicates the length of data in the
buffer.

48 •
AudioCodes, Inc.
SmartWORKS Developer’s Guide
The following is an example of a basic Call Back method:

// include files
#include<NTiAPI.h>
#include<NTiEvent.h>

// callback
CINTERFACE void APICallback(CHANNEL iCh,int EventCount,PMT_EVENT pMt,LPARAM
lParam)
{

int Code,Reason;

for(int i=0 ; i < EventCount; i++)
{

Code= pMt[i].EventCode;
Reason= pMt[i].SubReason;

switch(Code)
{
case EVT_DIGIT:
break;
case EVT_CC_DISC_CONF:
break;
...
...
}

}
}

// How to set callback for channels.
// register callback for channels
// gci is gci index which you set using control pannel and we assume that

it is set to 1.

MTSetEventCallback(0,(MTCALLBACK)APICallback,0);

Writing An Application
System Wide Definitions

• 49
System Wide Definitions
RETURN CODES

All API functions return a code of type MT_RET_... for the status of the API
function's execution. It is vital that the user application checks the status of each call
to see if it was successful.

NOTE: All return codes are passed to the user application as a hex value. To obtain a
text desciption use the API MTGetReturnCodeDescription().

All SmartWORKS return codes are listed below:

SMARTWORKS RETURN CODES1

Return Code Hex value Meaning

MT_EXCEPTION 0xE000220FL An exception occurred during the API call

MT_RET_API_THREAD_PROTECTED 0xE0002019L API is referred by other thread

MT_RET_BAD_CURSOR 0xE0002031L Invalid index offset

MT_RET_BAD_JOIN 0xE0002029L Invalid crosspoint coordinates

MT_RET_BOARD_INUSE 0xE0002018L Board device in use by another application

MT_RET_BOARD_NOT_OPENED 0xE0002016L Board device not opened for access

MT_RET_BUSY 0xE0002010L Channel is busy

MT_RET_CANNOT_CREATE_EVTQEVENT 0xE0002205L Unable to create event for the event queue

MT_RET_CANNOT_CREATE_MUTEX 0xE000220EL Mutex creation failed

MT_RET_CHANNEL_INUSE 0xE0002017L Channel device not opened for access

MT_RET_CHANNEL_NOT_OPENED 0xE0002015L Channel device not opened for access

MT_RET_COMPAT_NOTSUPPORTED 0xE000220CL Compatibility mode is not supported in this
implementation

MT_RET_DATA_TRUNCATED 0x60002036L Buffer allocated by application does not have
enough space for data structure associated
with specified API. This return code is only
used if FlagDataTruncated is enabled in the
MTSYS_CONFIG or MTSYS_CONFIGURATION
data structure is enabled. Otherwise, the data
is truncated the MT_RET_OK is returned to
users.

MT_RET_DEVICE_NOTFOUND 0xE0002200L Voice interface device was not found

MT_RET_EVTQMUTEX_ABANDONED 0xE0002208L The event queue synchronization mutex was
abandoned by another thread

MT_RET_EXTENDED_ERROR 0xE0002024L Extended error

MT_RET_FORMAT_NOT_SUPPORTED 0xE0002001L Media format is not supported

MT_RET_IDLE 0xE0002011L Channel is idle

MT_RET_BOARD_INCOMPATIBLE_BINFILE 0xE0002043L file type does not match board type

MT_RET_INTERNAL_ERROR 0xE0002201L Internal DLL error

MT_RET_INVALID_BINFILE 0xE0002042L image file version cannot be retrieved

50 •
AudioCodes, Inc.
SmartWORKS Developer’s Guide
MT_RET_INVALID_BOARD 0xE0002008L Board number is out of range

MT_RET_INVALID_BUSTYPE 0xE0002030L Bus type is invalid

MT_RET_INVALID_CHANNEL 0xE0002009L Channel number is out of range

MT_RET_INVALID_DEVICE_IO 0xE0002013L Invalid Device IO setting

MT_RET_INVALID_EVENT_QUEUE 0xE0002207L Invalid event queue

MT_RET_INVALID_FILEINDEX 0xE000220AL The MT_IO_CONTROL FileIndex field is out of
range for the file

MT_RET_INVALID_FILENAME 0xE0002210L Invalid filename

MT_RET_INVALID_FUNC 0xE0002006L Function code is not valid

MT_RET_INVALID_HW_INT 0xE0002007L Bad hardware IRQ at initialization

MT_RET_INVALID_PARAM 0xE0002012L Invalid argument passed to function

MT_RET_IO_PENDING 0x60002033L Background I/O operation is in progress or
queued.

MT_RET_ISDNPT_BAD_TRUNK_NUMBER 0xE0002216L ISDN channel not found

MT_RET_ISDNPT_CALL_NOT_FOUND 0xE0002215L ISDN channel not found

MT_RET_ISDNPT_CHANNEL_NOT_FOUND 0xE0002214L ISDN channel not found

MT_RET_LIB_LOAD_FAILED 0XE0002040L driver load failed

MT_RET_MALFUNCTION 0xE0002005L Hardware failed during initialization

MT_RET_MISSING_TERMINATOR 0xE0002212L A terminating entry was not found in an array
argument.

MT_RET_MUX_OFF 0xE0002028L Multiplexer system was not started

MT_RET_MUX_ON 0xE0002027L Multiplexer system was already started

MT_RET_MUX_THREAD_PROTECTED 0xE000201AL MUX is referred by other thread

MT_RET_NO_ASSOC_EVTQ 0xE0002209L No event queue has been associated with
channel

MT_RET_NO_DIGIT 0xE0002002L No digit available

MT_RET_NO_MEM 0xE0002206L An operation could not be completed due to
insufficient memory or an error occurred
while attempting to allocate memory

MT_RET_NO_MUX 0xE0002026L Multiplexer is not available

MT_RET_NOT_AVAILABLE 0xE0002014L Feature is not available

MT_RET_NOT_APPLICABLE 0xE000201D This feature is available, but is currently not
enabled.

MT_RET_NOT_ENOUGH_BUFSPACE 0x60002035L StreamOut does not have enough buffering
space for API request

MT_RET_NOT_ENOUGH_DATA 0x60002034L StreamIn does not have enough data for API
request

MT_RET_NOT_STARTED 0xE0002004L Voice system not started

SMARTWORKS RETURN CODES1 (CONTINUED)

Return Code Hex value Meaning

Writing An Application
Using Data Structures

• 51
Matrix folder.

Using Data Structures
Structures are used to pass parameters to or from the application. Only a pointer to
the structure is passed, not the whole structure. The application fills an input
structure and passes the pointer to the API, which reads or copies the information.
The application also passes a pointer to the output structure which the API fills with
the requested information.

All input structures are buffered in the API. This means that the application can only
destroy or reuse the structure after it has been populated by the function. Voice
buffers and DTMF buffers used by a background function must stay in existence
until the application receives a terminating event for that function.

As noted earlier, all entries in an input structure that are reserved, not needed, or
not used must be set to zero to ensure future compatibility.

MT_RET_OK 0x00000000L No error

MT_RET_QFULL 0xE0002032L Invalid index offset

MT_RET_SERVICE_ALREADY_STARTED 0xE0002204L Requested service already started

MT_RET_SERVICE_NOT_STARTED 0xE0002203L Voice service not started

MT_RET_SERVICE_STOPPED 0x60002213L Voice service stopped or terminated

MT_RET_STARTED 0xE0002003L Voice system already started

MT_RET_STREAMIN_THREAD_PROTECTED 0xE000201BL STREAMIN is referred by other thread

MT_RET_STREAMOUT_THREAD_PROTECTED 0xE000201CL STREAMOUT is referred by other thread

MT_RET_UNKNOWN_DEVICE_ERROR 0xE0002202L Unknown device error

MT_RET_UNKNOWN_IOTRANS_HANDLE 0xE000220DL The handle in the IO_TRANS structure was not
obtained through the AudioCodes API file
open functions

MT_RET_VERSION_MISMATCH 0xE0002211L Version mismatch

MT_RET_ZERO_FILELENGTH 0xE000220BL The MT_IO_CONTROL FileLength field is zero

MT_TIMEOUT 0xC0040013L Wait for event timed out

MT_XRET_BADFUNCTION 0xE0002120L Bad function

MT_XRET_BADHANDLE 0xE0002114L Bad handle

MT_XRET_BADPARAM 0xE0002121L Invalid argument passed to function

MT_XRET_QEMPTY 0xE0002119L Event queue is empty

MT_XRET_QFULL 0xE0002118L Event queue is full (has reached maximum
limit)

1. All return codes are defined in the NtiErr.h file.

SMARTWORKS RETURN CODES1 (CONTINUED)

Return Code Hex value Meaning

52 •
AudioCodes, Inc.
SmartWORKS Developer’s Guide
ZERO OUT PARAMETERS

Not all functions use all parameters. In cases where not all parameters are used, the
value of unused parameters should always be set to zero.

There are several ways to “zero out” unused parameters:

One way is to make a default structure with the most commonly used
parameters set to a default value and the rest to zero. You would then copy this
structure to a local structure where specific values are filled in.

Another way is to always zero out the structure before filling in the values.

This section defines two structures that are used by many of the SmartWORKS APIs:
MT_IO_CONTROL and MT_EVENT. For exact structure definitions refer to the
NtiData.h header files and API definitions in the next chapter of this book.

NOTE - The structures in the following sections do not include reserved
parameters.

Chapter 5
Theory of Operation

AudioCodes, Inc.
SmartWORKS Developer’s Guide54 •
Overview
This chapter provides theoretical discussions when using the SmartWORKS API.

System Functions
The following section provides an overview of the SmartWORKS functions relative
to system configuration and information.

SYSTEM CONFIGURATION

Users can alter the configuration of the system via the MTSysSetConfig() function
(MTSetSystemConfig() is maintained for backwards compatibility). This API sets a
system configuration into the Windows registry, however the NTI driver and DLL
rely on system and adapter level parameters at load time to configure their
behavior. When the configuration is changed, both the driver and the DLL must be
reloaded for the new configuration to take effect. To do this the host machine must
be rebooted.

SYSTEM INFORMATION

MTGetSystemInfo() fills the provided MTSYS_INFO structure with information
about the system status, number of boards, number of channels, and the MUX
operation information of the system.

MTGetVersion() returns the version of the SmartWORKS driver and on board
firmware. The versions are for the first board. Use MTGetAdapterInfo() to get the
versions for each board. The version information is defined as MT_VERSION.
The SmartWORKS software version number is composed of two 32-bit version long
integers.

MTGetDLLVersion() is a function that is used to retrieve the version information
associated with the NtiDrv.dll file.

SYNC HOST/BOARD TIME

The SmartWORKS API allows a user to resync the host time with a SmartWORKS
board. By default, the timestamp is synced when a board/channel is opened for the
very first time. Use this API to re-synchronize the time between the host PC and
SmartWORKs board without shutting down the NTI application. If the host PC’s
time is modified this API is called to resync the time so that event timestamps are
adjusted.

This API resynchronizes the host time with all SmartWORKs board(s) in the platform
provided that the application has access through either the board or a channel. In
the case of an NGX card, whose board access is excluded from this
resynchronization capability, the application requires access of one NGX channel
per NGX board.

If access to a SmartWORKs board is not present, SDK assumes that time
resynchronization is not required on this board.

NOTE: If multiple applications are running, such as one application per
channel, this API needs to be called from each and every application.

Theory of Operation
Board Functions and Configuration

• 55
Board Functions and Configuration
The following section provides an overview of the SmartWORKS functions used to
manage SmartWORKS boads.

BOARD CONTROL

Two functions MTOpenBoard() is used to open individual SmartWORKS boards.
When MTOpenBoard() is used, channels remain closed. Users are recommended to
use MTSysStartUp() to open all boards and channels in a single system.

To close an individual board, users can invoke MTCloseBoard(). Should the user
application need to release all resources (boards, channels, TDM timeslots, etc.), it is
suggested to do so with MTSysShutdown(). Calling of this function is not
necessary unless only a specified board is to be closed.

After a board is opened, any application can check the owner status of this board.
MTGetOpenBoardStatus() returns the ownership of the specified board. A board
needs to be opened before any access or control can be performed on it by the
application.

A board can only be opened by one application at one time. When a board is
opened and held by one application, attempting to open the same board will fail.
However, APIs such as MTGetAdapterInfo(), MTGetBoardOEMInfo(),
MTGetBoardAssemblyInfo() still return board information regardless of the
ownership.

BOARD INFORMATION FUNCTIONS

MTGetAdapterInfo() fills the MTADAPTER_INFO structure with information about
the specified board. All SmartWORKS boards are indexed beginning with 0. The
total number of boards in the system can be retrieved by using the
MTGetSystemInfo() function. MTGetAdapterStatusDesciption() retrieves the
text description that can be used to explain the value returned by the
MTADAPTER_INFO.Status field.

When called, MTGetAdapterDescription() will return an ASCII description of the
board in a system. A call to MTGetAdapterInfo() is required to use this API to
obtain the first parameter, BoardType.

When using a SmartWORKS DT or DP board, users can obtain network interface
protocol/variant settings by using the MTGetAdapterXInfo() function. The user
application must have the ownership of the specified board.

BOARD IDENTIFICATION

The SmartWORKS API supports up to 16 physical boards and/or up to 512 full
duplex channels within a system. The API functions refer to a specific board and or
channel within the system using one of two numbering schemes: physical board
numbers, and Global Channel Index (logical channel numbers). All board numbers
are assigned sequentially starting from zero.

Certain API functions will allow the developer to reference all boards
simultaneously by using the nBoard = -1.

The following set of functions can be used to help identify boards in a system or to
set private OEM identifiers to SmartWORKS boards.

AudioCodes, Inc.
SmartWORKS Developer’s Guide56 •
LOCATING BOARDS IN A CHASIS

The SmartWORKS API includes a function, MTBlinkBoard() that causes a board’s
CR17 LED on the specified board to blink its board index plus one 10 times so that
the user can match a board’s physical location with its board number. Most
SmartWORKS boards use CR17, however some variations are present within the
SmartWORKS family. Refer to the SmartWORKS Users Guide or the board’s Quick
Install for the exact CR number and location.

After MTBlinkBoard() is used, the user can also invoke MTStopBlinkBoard() at any
time to stop the process.

USING A BOARD’S THUMBWHEEL (NGX ONLY)

The NGX board is designed with a thumb wheel that can be set prior to the board’s
installation. Once this thumbwheel is used, the function
MTBoardGetCustomSwitchSetting() returns the value set on the board’s
thumbwheel.

OBTAIN BOARD’S SERIAL NUMBER

The MTGetBoardAssemblyInfo() API retrieves board serial information that resides on the
board's EEPROM such as assembly number, hardware revision, serial number, assembly
code, and the date code. Board serial information can be read but not altered. The following
information is returned to the user application:

OEM IDENTIFICATION

The SmartWORKS API provides a method that allows users to authenticate products
for distribution control purposes. The function MTSetAdapterEEPROMConfig(), provides a
method for creating and setting a unique 128 byte identifier to the board. Once this value is
set, MTGetAdapterEEPROMConfig() can be used to retrieve the board’s setting.

NOTE: When using MTSetAdapterEEPROMConfig(), if the user passes
information that is longer than 128 bytes, the data will be truncated. When
using MTGetAdapterEEPROMConfig(), the application returns the value,
with a pLength of 128 bytes.

Name Description

AssemblyNumber NULL terminated string, maximum size 16
bytes

HWRevision NULL terminated string of hardware revi-
sion number, maximum size 4 bytes

SerialNumber NULL terminated string of board serial
number, maximum size 8 bytes

AssemblyCode NULL terminated string of assembly code,
maximum size 4 bytes

DateCode NULL terminated string of manufacturing
date, maximum size 8 bytes

Theory of Operation
Board Functions and Configuration

• 57
BOARD CONFIGURATION

Users can select to configure the board settings via their application using a
SmartWORKS API or via the Control Panel. The NTI driver and DLL rely on system
and adapter level parameters at load time to configure their behavior. When the
configuration is changed, both the driver and the DLL must be reloaded for the new
configuration to take effect. When using the Control Panel to change board
configuration, users must restart the board’s drivers via the Device Manager
(Windos OS) or the command line program when running Linux. When changing
board configuration via the SmartWORKS API, functions can be used to restart the
board driver and load configuration.

BOARD CONFIGURATION FUNCTIONS

Most board configuration is set via a single API, MTBoardSetConfig().
MTSetAdapterConfig() is obsolete, but maintained in the SDK for backwards
compatibility. NOTE: When using the IPX board, users are required to use
MTBoardSetConfig() will includes a data structure to configure Ethernet port
parameters.

The following parameters are controlled via the MTBoardSetConfig() function. The
fields that can be modified via the Control Panel are marked with an asterisk (*).

Name Description

SystemIndex Adapter index on PCI bus presented by OS, 0 -
(MAX_BRD_DEVICES-1)

AdapterType This field is read only: VR6400, VR6409, and etc.
UNKNOWN_CARD for no board in index 'SystemIndex'

General Adapter Parameters

MasterMode* MODE_SLAVE(default), MODE_MASTER, MODE_MASTER_A,
or MODE_MASTER_B. NOTE: This field can also be set using
the MTSetCTMasterClock() function.

 MasterClock Master clock source reference value, default,
CLOCK_SOURCE_OSC. NOTE: This field can also be set
using the MTSetCTMasterClock() function.

Sec8kNetrefClock MVIP Sec8K or H100 Netref clock output, default,
SPRM_SOURCE_DISABLE

PresentationPreference Board ordering preference for the associated adapter:
Range: 0..MAX_BRD_DEVICES (default)
Not implemented for Linux yet

General CT Bus Parameters

CTBusType* MUX_MVIP
MUX_H100
MUX_NONE(default)

TDMEncoding* 0 for u-law, 1 for A-law

CTBusSegmentIndex Bus segment index the associated adapter is on

 Interface Parameters

 SMSize Shared memory size in bytes, min MIN_SMSIZE, default 8K

AudioCodes, Inc.
SmartWORKS Developer’s Guide58 •
NGX Parameters
Index 0 for base card, 1 for the 1st daughter card, 2 for
the 2nd daughter card

CTBusTermination* 0 for disable, others for enable

PBXType[MAX_DC]* PBX supported. Refer to the NtiData.h file for a complete list
of valid values. NOTE: If a PBX type is used with an older
version of the SDK, this field may not be valid. Users can set
this value via the Control Panel.

DChOption[MAX_DC]* 0 for D-channel disabled

Termination[MAX_DC]* 0 for Hi-Z, 1 for 120 ohm

 DT/DP Trunk Parameters
Index 0 for 1st trunk and etc.

E1Option* T1_OPTION for T1, E1_OPTION for E1

Framing[MAX_TRUNKS]* FRM_E1_G704(default), FRM_T1_SF, etc.

LineCoding[MAX_TRUNKS]* LC_AMI(default), LC_E1_HDB3, or LC_T1_B8ZS

T1LineBuildOut[MAX_TRUNKS]* LBO_T1_15DB(default), etc.

E1LineBuildOut[MAX_TRUNKS]* LBO_E1_120OHM(default) or LBO_E1_75OHM

ZeroCodeSupression[MAX_TRUNKS]* ZCS_NONE(default), ZCS_GTE, etc. Refer to the NtiData.h
file for a complete list of valid values defined for the
MT_FRAMER_STATE.ZCS field.

ProtocolSignaling[MAX_TRUNKS]* SIGNALING_NONE
SIGNALING_ISDN
SIGNALING_NFAS
SIGNALING_RBS (T1 only on SmartWORKS DT)

ProtocolVariant[MAX_TRUNKS]* E1 & T1: (example PROTOCOL_ISDN_ETS300
national 2
At&t 5ESS
DMS 100
NTT
Austel 1
Q.SiG
RBS (T1 only): (example PROTOCOL_RBS_LOOP_FXO)
E&M Wink
E&M Immediate
Loop_FXO

ISDNInterfaceSide[MAX_TRUNKS]* SUPPORT_TE(default) or SUPPORT_NT

RBSMaxDigits[MAX_TRUNKS]* Default 10

RBSInterDigitTime[MAX_TRUNKS]* Min 10. Default 3000, in unit of ms

RBSDialingDelay[MAX_TRUNKS]* Min 300, Default 1000, in unit of ms

NFASIndex[MAX_TRUNKS]* 0 to (MAX_NFAS - 1)

LD Board

Name Description

Theory of Operation
Board Functions and Configuration

• 59
SETTING THE BOARD’S CLOCK SOURCE

General Rules:

• All Bus Types - to create a system with multiple Master boards that are not
connected with H.100 and MVIP cables, Bus Segmentation must be enabled.

• MVIP - to allow more than one Master board per system Bus Segmentation
must be enabled using the Control Panel or MTSetAdapterConfig(). If Bus
Segmentation is not enabled, then only one Master board is allowed.

• H.100 - allows up to two Master boards per system without enabling Bus Seg-
mentation. To create a system with more than two Master boards, Bus Seg-
mentation must be enabled using the Control Panel or
MTSetAdapterConfig().

• H.100 - if the system is created with two Master boards and Bus Segmentation
is disabled, then one board must be set as MASTER_A and the other
MASTER_B using MTSetCTMasterClock().

NOTE: When boards are connected with a Bus cable, AudioCodes does not
recommend enabling Bus segmentation.

A flow diagram, on the following page, outlines the process for setting a board’s
clock source.

OffhookImpedance* 0 = FCC_600, FCC 600 ohms resistive
1 = ETSI_270, ETSI 270 ohm+750 ohm || 0.15 micro-F
2 = AUSTRALIA_220, Australia 220 ohm+680 ohm || 0.12
micro-F
3 = CHINA_200, China 200 ohm+680 ohm || 0.1 micro-F

IPX Board

MT_IPCONFIG* IpNetParams[MAX_IP_NET_PORTS]
An array of settings for the three ports on the IPX. The
MT_IPCONFIG structure is defined below.

Name Description

AudioCodes, Inc.
SmartWORKS Developer’s Guide60 •
BOARD FIRMWARE FUNCTIONS

The SmartWORKS API provides functions that enable the user to upgrade the
board’s firmware. Refer to the SmartWORKS Function Reference Library for
information about the MTWFInit() and MTWFUpgradeFirmware() functions.

MANAGING BOARD EVENTS

All SmartWORKS boards have system, board and channel events. The SmartWORKS
DLL supports both the polling and callback method of event retrieval. Both
methods are explained in the previous chapter in the Event Control section. The
MT_EVENT data structure is passed to the user with every SmartWORKS events. This
data structure contains event specific information. The MT_EVENT data structure is
defined in the SmartWORKS Function Reference Library in Chapter Three, the Event
Code Library.

To enable the polling method for board events use the MTWaitforAdapterEvent()
function. (MTWaitforBoardEvent() is obsoleted, but maintained in the SDK for
backwards compatibility). The user application is responsible for monitoring the
queue often enough to ensure that it does not overflow. If the event queue is full,

NOTE: This flow diagram assumes one Master Board per system and system boards are connected with a H.100 or MVIP cable.

 MTSetCTMasterClock()
 mMaster = MODE_SLAVE

 Configuration is complete

Is this a
Master Board?

Set Clock Source

Use the Local
Clock?

YES

Obtain clock
from CT Bus?

 MTSetCTMasterClock()
 mMaster = MODE_MASTER (MVIP)
 - or -
 MODE_MASTER_A (H.100)

MTSetCTMasterClock
 Clock Source = CLOCK_SOURCE_OSC

 Configuration is complete

NO

YES NO

YES
MTSetCTMasterClock
 Clock Source = CLOCK_SOURCE_SEC8K (MVIP)
 - or -
 CLOCK_SOURCE_CT_H100 (H.100)

 Configuration is complete

NO

MTSetCTMasterClock
 Clock Source = CLOCK_SOURCE_NET1

YES Obtain clock
from trunk?

Select which Framer to use as
clock source
 MTSetNET()

 Configuration is complete

Theory of Operation
Channel Control and Information Functions

• 61
new events are lost and are reported in the Windows Event Viewer. All events are
maintained in FIFO order. NOTE: When using Linux, all information is written to a
‘messages’ file located in the /var/log directory.

The second and preferred method is the callback method. A call back function
must be registered with the SmartWORKS API by the application and will be
invoked when the specified event occurs. When a call back function is invoked,
events are passed as parameters back to the application. A call back function does
not require the application to poll for events. To enable the callback method for
board events, users must invoke the MTSetBoardEventCallback() function. To clear
the registered callback function users can invoke MTClearBoardEventCallback().
This API works as a synchronous function. Therefore, once callback is initiated, it
does not release it’s lock on the user application until a response has been received.
Invoking MTClearBoardEventCallback() from a callback function would enter this
control path into a deadlock. To prevent this the return
MT_RET_API_THREAD_PROTECTED message is generated.

PUTTING AN EVENT ON THE BOARD QUEUE

A user application can also put an event onto the board event queue so that other
applications can receive them. To do this, use the MTPutBoardEvent() function. The
user application must fill out the MT_EVENT data structure.

Channel Control and Information Functions
The following section provides an explanation of the SmartWORKS functions used
to control, count and access information and statistics on all SmartWORKS channels.

CHANNEL CONTROL FUNCTIONS

This section provides an overview of the functions used to control channels and
obtain information and statistics for all SmartWORKS channels.

OPENING AND CLOSING CHANNELS

MTOpenChannel() is used to open individual SmartWORKS channels. This is the
preferred method when multiple applications will access a single board or multiple
boards in a single system. Prior to invoking MTOpenChannel(), users must first
invoke MTOpenBoard().

Users are recommended to use MTSysStartUp() to open all boards and channels in
a single system. When completed, MTSysStartUp() opens all boards and channels
in a system, plus board communications between the DLL and driver will be
opened, and the MUX will be enabled. This application is recommened when one
application owns all boards in a single system.

To close an individual channel, users can invoke MTCloseChannel(). Should the
user application need to release all resources (boards, channels, TDM timeslots,
etc.), it is suggested to do so with MTSysShutdown().

A channel can only be opened by one application at one time. When a channel is
opened and held by one application, attempting to open the same channel will fail.
However, APIs such as MTGetChannelInfo(), MTGetStatistics(), and
MTGetChannelOpenStatus() still return information regardless of the ownership.

MANAGING BACKGROUND FUNCTIONS

AudioCodes, Inc.
SmartWORKS Developer’s Guide62 •
Many SmartWORKS functions are background functions which return to the user
application when terminating conditions are met. A few functions exist so that
users can control the termination of functions via the SmartWORKS API.

MTStopChannel() returns the channel to an idle state. All functions are terminated,
and any functions queued for this channel are released. For each active function
that is stopped, the event EVT_STOP is reported to the user application. For
instance, if the channel is both playing and recording at the same time, then two
EVT_STOP events are reported for this channel.

MTStopCurrentFunction() is used to stop the current function which is active on
the channel. If more than one function is active, then all are released and a
corresponding EVT_STOP is reported for each background function. Any function
in the channel’s queue begins once this API is completed.

CHANNEL CONFIGURATION

When using the SmartWORKS API, various aspects of channel configuration are
controlled via specific APIs. For instance, to control Automatic Gain Control use the
MTChInputSetAGC() function. When configuring network settings, there are APIs
which correspond to the specific type of network. All network interface APIs are
defined in a specific section of this chapter.

SETTING CHANNEL TO DEFAULT

One function, MTSetChannelToDefault() is used to return the channel to default
settings.

CHANNEL NUMBERING (GCI) FUNCTIONS

The SmartWORKS API supports up to 16 physical boards and/or up to 512 full
duplex channels within a system. The API functions refer to a specific board and or
channel within the system using one of two numbering schemes: physical board
numbers, and Global Channel Index (logical channel numbers). All board numbers
are assigned sequentially starting from zero. Channel numbers are assigned
sequentially starting from either 0 or 1 (depending on how the user has configured
this setting in the Smart Control panel).

During initialization, as the Physical Boards are numbered, the SmartWORKS
software builds a list of the logical channels available in the system. This list is the
primary interface the API will use to refer to the channel resources in the system.

NOTE: The SmartWORKS API does not generate a channel list when using
the SmartWORK IPX boards.

The Global Channel Index (GCI) specifies whether the channel list is numbered
sequentially from 0 or 1 (depending on how the user has configured this setting in
the Smart Control panel). Channel numbers are presented in ascending order of the
Physical Board numbers. The maximum number of channels supported by
SmartWORKS is 512.

Certain API functions will allow the developer to reference all channels
simultaneously by using the nChannel = -1 (if GCI index = 0) or nChannel = 0 (if the
GCI index = 1).

For Example:

Theory of Operation
Channel Control and Information Functions

• 63
Function MTSetEventCallback() takes channel number -1 or 0, and registers
the callback function for all available channels.

The SmartWORKS API has several commands that can be used to determine the
relationship between the GCI and the physical channels on each board. The
MTGetGCI() and MTGetGCIMap() command will match a GCI indexed channel to its
physical board channel location.

For Example:

If GCI index = 0 and MTGetGCIMap(08, pBOARD, pBOARDTYPE, pGCI) returns
with *pBOARD=1, and *pGCI=0, this indicates GCI channel 08 resides on board
1 as its first channel. However, MTGetGCI(1,0,pGCI) should return with
*pGCI=08.

CHANNEL INFORMATION & STATISTICS

The SmartWORKS API maintains many functions which can be used to obtain
information and statistics for all open channels on a system.

MTGetOpenStatus() returns information about the status of the channel - whether
it is currently opened or closed. A channel can only be opened by one application
at one time. When a channel is opened and held by one application, attempting to
open the same channel will fail.

After a channel is opened, any application can check the owner status of this
channel. MTGetChannelOwner() returns the process ID of the access owner of the
specified channel. If the channel is currently not opened by any thread or
application, the returned value will be 0.

RUNTIME INFORMATION

Channel runtime status is available with the MTGetChannelStatus() function which
can be used to monitor a single channel. This function returns a current and
detailed description of a channel’s present state via the MTCHAN_STATUS data
structure. Information such as line conditions, channel status, bytes decoded and
encoded, as well as the total DTMF and MF detections are provided to the user
application. The MTCHAN_STATUS structure is defined in the SmartWORKS Function
Reference Library where MTGetChannelStatus() is discussed.

The MTGetChannelInfo() function returns channel properties applied to the
channel at board startup. Information such as the bus type and stream speed, along
with the timeslots mapped to this channel are provided within the MTCHAN_INFO
data structure. The MTCHAN_INFO structure is defined in the SmartWORKS
Function Reference Library where MTGetChannelInfo() is discussed.

RUNTIME ERRORS

Runtime errors such as encode overflow, decode underflow, and etc. are recorded
for each SmartWORKS channel. The MTGetStatistics() function allows the user
application to retrieve these counters. Once completed, the application must
invoke MTResetStatistics() in order to reset the channel counters.

The user application does not need to have the access rights of the specified
channel in order to obtain this information. To obtain runtime errors for each
channel on the entire board, users may invoke MTGetBoardStatistics(). This API is
used in conjunction with MTResetBoardStatistics().

AudioCodes, Inc.
SmartWORKS Developer’s Guide64 •
CHANNEL EVENT REPORTING

All SmartWORKS boards have system, board and channel events. The SmartWORKS
DLL supports both the polling and callback method of event retrieval. Both
methods are explained in the previous chapter in the Event Control section. The
MT_EVENT data structure is passed to the user with every SmartWORKS events. This
data structure contains event specific information. The MT_EVENT data structure is
defined in the SmartWORKS Function Reference Library in Chapter Three, the Event
Code Library.

To enable the polling method for channel events use the
MTWaitforChannelEvent() function. Once enabled, users invoke the
MTGetChannelEvent() (previously MTGetEvent()) to retrieve channel events. The
user application is responsible for monitoring the queue often enough to ensure
that it does not overflow. If the event queue is full, new events are lost and are
reported in the Windows Event Viewer. All events are maintained in FIFO order.
NOTE: When using Linux, all information is written to a ‘messages’ file located in
the /var/log directory.

The second and preferred method is the callback method. A call back function must
be registered with the SmartWORKS API by the application and will be invoked
when the specified event occurs. When a call back function is invoked, events are
passed as parameters back to the application. A call back function does not require
the application to poll for events. To enable the callback method for board events,
users must invoke the MTSetEventCallback() function. To clear the registered
callback function users can invoke MTClearEventCallback(). This API works as a
synchronous function. Therefore, once callback is initiated, it does not release it’s
lock on the user application until a response has been received. Invoking
MTClearEventCallback() from a callback function would enter this control path
into a deadlock. To prevent this the return MT_RET_API_THREAD_PROTECTED
message is generated.

PRIORITY EVENTS

Users can also set the channel give preferential treatment to an event.
MTSetPriorityEventCallback() provides a function point that will be called when
the specified event occurs on the specified channel. When invoking this API, users
must specify the channel and event code that will be handled with priority status.
When the specified channel receives the event specified through
MTSetPriorityEventCallback() function, the priority event callback function will
be invoked. Other events will invoke the general event callback function. To remove
a priority event callback use the MTClearPriorityEventCallback() function.

CONTROLLING EVENT QUEUES

The SmartWORKS API allows users to manage event queues on all channels. By
using the MTEventControl() function, users can enable, disable or flush the event
queue for all channels on the board. To flush events from a specified channel’s
queue invoke MTFlushEvents().

CONTROLLING EVENT REPORTING

The SmartWORKS API allows users to control how a channel handles the reporting
of events pertaining to line conditions. Use the function MTSetEventFilter() to
enable/disable event reporting of specified line conditions. This function controls
event reporting on a per channel basis.

Theory of Operation
Call Connection Functions

• 65
PUTTING AN EVENT ON THE CHANNEL QUEUE

A user application can also put an event onto the channel event queue so that
other applications can receive them. To do this, use the MTPutChannelEvent()
function (formally MTPutEvent()). The user application must fill out the MT_EVENT
data structure.

Call Connection Functions
Some boards of the SmartWORKS family support a Call Control API for the purpose
of managing active calls. The Call Control API is used primarily on the SmartWORKS
DT board to provide terminate support. The SmartWORKS DP card also relies on this
API to receive call indications for passive monitoring.

SMARTWORKS CALL CONTROL API

The SmartWORKS Call Control API is an abstraction layer that provides application
developers the interface to issue outgoing calls, receive and accept incoming calls,
and tear down calls without requiring an extensive knowledge of the signaling
protocol. The SmartWORKS Call Control API provides a powerful interface for all
signaling protocols.

CALL PROCESSING

This section describes how the SmartWORKS Call Control API allows an application
developer to manage setup and tear down of incoming and outgoing calls.

The following ISDN variants are supported by the SmartWORKS DT:

ISDN PRI T1 variants:

• NI-2 (North America)

• AT&T 5ESS (North America)

• Nortel DMS100 (North America)

• Euro-ISDN (Europe & Rest of the World)

• NTT Japan

ISDN PRI E1 variants:

• Austel 1 (Australia)

• ETS 300

• QSIG (North America)

T1 RBS variants:

• E&M immediate

• E&M Wink

• Loop Start FXS

• Loop Start FXO

AudioCodes, Inc.
SmartWORKS Developer’s Guide66 •
Dialog between user applications and the SmartWORKS API is handled by
request/confirmation/indication/response exchanges as follows:

The user application issues a request and receives confirmation to its request as an
event. The SmartWORKS API issues indications as events and the application
responds. The diagram below shows this dialog:

INCOMING CALLS

The diagram below illustrates a typical incoming call accepted by the user's
application:

1 · Through the polling or callback mechanism, the application receives the event
EVT_CC_CONNECT_IND

2 · The application processes the information carried by this event (Sending
Complete, Called Party Number, Calling Party Number, etc.)

a When using ISDN: once this event is received, the application accepts
the call by calling the API MTCC_ConnectResp().

b When using RBS: when the SendingComplete field is set, this means
that all the called party information is provided. The application then
accepts the call by calling the API function MTCC_ConnectResp(). NOTE: If
the SendingComplete field is 0, this means that the called party number
information is not complete yet. The application must wait for the event
EVT_CC_INFO_IND to get this information and then accepts the call by
calling the API function MTCC_ConnectResp().

FIGURE 1: CALL PROCESSING

User Application

Request Confirmation Indication Response

SmartWORKS

Call Processing

Theory of Operation
Call Connection Functions

• 67
3 · When the call is connected point to point, the application receives the event
EVT_CC_CONNECT_CONF.

OUTGOING CALL

The diagram below illustrates the Call Control exchange for a typical outgoing call
originated by the SmartWORKS application:

1 · The application formats a MT_CC_CONNECT_REQ structure and calls the API
function MTCC_ConnectReq().

2 · Through the polling or callback mechanism, the application receives the event
EVT_CC_PROGRESS_IND to indicate that the call is in progress (depending on
which signaling protocol is in use.)

3 · The application receives the event EVT_CC_ALERT_IND to indicate that the
remote side is being alerted (depending on which signaling protocol is in use.)

FIGURE 2: INCOMING CALLS

User Application

Call is connected
end to end

EVT_CC_CONNECT_IND
(SendingComplete=0)

EVT_CC_INFO_IND

MTCC_ConnectResp()

EVT_CC_CONNECT_CONF

SmartWORKS

Incoming Calls

AudioCodes, Inc.
SmartWORKS Developer’s Guide68 •
4 · When the remote side accepts the call, the application receives the event
EVT_CC_CONNECT_CONF to indicate that the call is connected end to end.

CALL SCREENING AND NUMBER PRESENTATION

The SmartWORKS API allows users to control outbound calling presentation or
screening. These options are controlled by the PresScrnInd field in the
MT_CC_CONNECT_REQ structure. This field relies as two bits to control
presentation and screening (user must apply OR logic, one can use presentation OR
screening). The least significant bit controls screening while the most significant bit
controls presentation. All fields are defined in the NTIDataCC.h file. The table below
provides an explanation of each field:

FIGURE 3: OUTGOING CALLS

User Application

Call is connected
end to end

MTCC_ConnectRequest()

EVT_CC_PROGRESS_IND

EVT_CC_ALERT_IND

EVT_CC_CONNECT_CONF

SmartWORKS

Outgoing Calls

Theory of Operation
Call Connection Functions

• 69
APPLICATION INITIATED CALL CLEARING

The diagram below shows the Call Control exchange for a typical call tear down
initiated by a user application:

1 · The application formats an MT_CC_DISC_REQ structure and calls the API
function MTCC_DiscRequest().

TABLE 4: OUTBOUND SCREENING AND PRESENTATION OPTIONS

Bit Name Description

Screening Options

0x00 MT_CC_USR_NOTSCREENED Calling number is not screened

0x01 MT_CC_USR_VERIFIED_PASSED Calling number is verified by the local switch. If
number is not valid, the call is passed through
but flagged as such for the far end

0x02 MT_CC_USR_VERIFIED_FAILED Calling number is verified by the local switch. If
number is not valid, the call is not passed
through

0x03 MT_CC_NET_PROVIDED A calling number known by the local switch is
displayed to the far end

Presentation Options

0x00 MT_CC_PRES_ALLOWED Calling number is presented to far side

0x10 MT_CC_PRES_RESTRICTED The local switch states that the calling number is
restricted

0x20 MT_CC_NB_NOT_AVAILABLE The local switch states that the calling number is
not available

AudioCodes, Inc.
SmartWORKS Developer’s Guide70 •
2 · The polling or callback mechanism notifies the application that the call tear
down is complete and that the resources are available via the
EVT_CC_DISC_CONF event.

NETWORK INITIATED CALL CLEARING

The user application is notified of a network initiated call clearing request via
EVT_CC_DISC_IND. Upon receipt of this event, the application considers the call
released and the resources available. No application response is necessary for this
event.

EVENTS GENERATED WHEN PASSIVE MONITORING

The following section provides examples of which events are generated by the
passive call control system:

FIGURE 5: APPLICATION INITIATED CALL CLEARING

User Application

MTCC_DiscRequest

tEVT_CC_DISC_CONF

SmartWORKS

Application Initiated Call Clearing

Theory of Operation
Call Connection Functions

• 71
C
O

C
PE

User Application

EVT_CALL_ABANDONED

SmartWORKS

SETUP

CALL PROCEEDING

ALERTING

RELEASE

DISCONNECT

Call Abandoned

C
O

C
PE

User Application

EVT_CALL_CONNECTED

SmartWORKS

SETUP

CALL PROCEEDING

ALERTING

CONNECT

CONNECT ACK

Call Connected

AudioCodes, Inc.
SmartWORKS Developer’s Guide72 •
C
O

C
PE

User Application

EVT_CALL_HELD

SmartWORKS

HOLD ACK

HOLD

Call Held

C
O

C
PE

User Application

EVT_CALL_REJECTED

SmartWORKS

SETUP

CALL PROCEEDING

ALERTING

DISCONNECT

RELEASE

Call Rejected

C
O

C
PE

User Application

EVT_CALL_RELEASED

SmartWORKS

RELEASE

CALL PROCEEDING

RELEASE COMP

Call Released

Theory of Operation
Call Connection Functions

• 73
C
O

C
P
E

User Application

EVT_CALL_RESUMED

SmartWORKS

RESUME ACK

RESUME

Call Resumed

C
O

C
PE

User Application

EVT_CALL_RETRIEVED

SmartWORKS

RETRIEVE ACK

RETRIEVE

Call Retrieved

C
O

C
PE

User Application

EVT_CALL_SUSPENDED

SmartWORKS

SUSPEND ACK

SUSPEND

Call Suspended

AudioCodes, Inc.
SmartWORKS Developer’s Guide74 •
ISDN STANDARDS

 TERMINATE CALL CONTROL. - SmartWORKS DT

ISDN PRI T1 variants:

• NI-2 (North America)

• AT&T 5ESS (North America)

• Nortel DMS100 (North America)

• Euro-ISDN (Europe & Rest of the World)

• NTT Japan

ISDN PRI E1 variants:

• Austel 1 (Australia)

• ETS 300

• QSIG (North America)

T1 RBS variants:

• E&M immediate

• E&M Wink

• Loop Start FXS

• Loop Start FXO

PASSIVE CALL CONTROL - SmartWORKS DP

• All ISDN protocols are supported as well as DPNSS, DASS2, and MFR2 (China,
Brazil)

NOTE: The SmartWORKS NGX only supports the passive tapping of ISDN
BRI.

SUPPLEMENTARY SERVICES FOR ISDN TERMINATE SUPPORT

Information elements are collected to provide the following supplementary
services:

The supplementary services are provided through the following API structures:

• CC_FACILITY_REQ

• CC_FACILITY_CONF

Call Hold /Call Retrieve Call transfer

Call Forward on Busy Charging

Call Forward unconditional Recall

Call Forward on No Reply Three party Conference

Suspend/Resume Malicious Call ID

Theory of Operation
Call Connection Functions

• 75
• CC_FACILITY_IND

• CC_CONNECT_REQ

NOTE:
The support of Supplementary services depends on ISDN variants

• Call Hold / Call Retrieve (valid for US variants only)

• Recall (valid for ETSI variant only)

BASIC CALL SETUP

The following illustrates call setup as implemented on the DT card.

SMARTWORKS RBS SIGNALING PROTOCOLS

The SmartWORKS DT supports Robbed Bit Signaling (RBS) protocols. Several
variants of each protocol are also supported.

ROBBED BIT SIGNALING

The Robbed Signaling protocol stack allows SmartWORKS DT cards to connect to T1
trunks using the following RBS variants:

• E&M Immediate Start

• E&M Wink Start

AudioCodes, Inc.
SmartWORKS Developer’s Guide76 •
• Loop Start FXS

• Loop Start FXO

The E&M Immediate Start and Wink Start variants are symmetrical, meaning that
the customer premises uses the same variant as the central office. The Loop Start
FXS and FXO variants are not symmetrical, meaning that one side uses the FXS
variant and the other side must use the FXO variant.

CONFIGURATION PARAMETERS

The variants mentioned above use Dual Tone Multi Frequency (DTMF) digits for
dialing. Optimization of the call connection delay is provided by the following
configuration parameters:

• Inter-digit Time

• DID Maximum number of digits

These two parameters are provided in the trunk configuration, and affect all
channels on a trunk.

RBS IMPLEMENTATION CHARACTERISTICS

Incoming Calls

When the inbound side detects a line seizure (E&M Wink Start or E&M Immediate) or
a ring indication (Loop Start), the RBS stack indicates a call presence to the
application via the EVT_CC_CONNECT_IND event and starts a 10 second timer that
listens for digits. If no digits are detected within 10 seconds, the RBS stack notifies
the application that this call doesn't have a called party number via the
EVT_CC_INFO_IND event. If the called party number is valid, the application accepts
the request and establishes the call connection. If the called party number is invalid,
the request is refused and a connection is not established.

RBS is an in-band signaling method that extracts the least significant bit of certain
DS0 frames and uses them as signaling bits to monitor the ON-HOOK/OFF-HOOK
status of the line. In the Wink Start variant, when a phone receiver is picked-up or
goes off-hook by the calling party, the public switched telephone network (PSTN)
verifies that it’s ready to process a request (i.e. the called party digits) by going
off-hook for approximately 200 ms, and then going back on-hook. This process is
known as sending a wink.

When the called party digits are received, the called party goes off-hook and the call
connection is established. Once the calling party hangs-up, the RBS stack notifies
the application that the call connection is released at which point line resources are
made available via the EVT_CC_DISC_IND event.

Outgoing Calls

In the Loop Start FXS variant, the protocol doesn't provide any information
indicating that the called party has accepted the call. When the called party digits
have been dialed, the RBS stack starts a 10 second timer. After 10 seconds expires,
the RBS stack notifies the application that the call is connected via the
EVT_CC_CONNECT_CONF event.

Theory of Operation
Call Connection Functions

• 77
RBS protocol to Call Control API Mapping

This section shows how the SmartWORKS RBS implementation maps the Call
Control API to each RBS protocol variant.

FIGURE 6: E&M IMMEDIATE

U
se

r A
pp

lic
at

io
n

E&M Immediate

Call Control

Outgoing

RBS Stack

Incoming

Call ControlRBS Stack

U
se

r A
pp

lic
at

io
n

MTCC_ConnectResp

Off hook

Off hook

On hook

DTMF Digits
EVT_CC_PROGRESS_IND

EVT_CC_CONNECT_CONF

EVT_CC_DISC_CONF

EVT_CC_DISC_IND

EVT_CC_CONNECT_IND

EVT_CC_INFO_IND

On hook

MTCC_ConnectRequest

MTCC_DiscRequest

EVT_CC_CONNECT_CONF

AudioCodes, Inc.
SmartWORKS Developer’s Guide78 •
FIGURE 7: E&M WINK

U
se

r A
pp

lic
at

io
n

E&M Wink

Call Control

Outgoing

RBS Stack

Incoming

Call ControlRBS Stack

U
se

r A
pp

lic
at

io
n

MTCC_ConnectResp

Off hook

Off hook

On hook

DTMF Digits

WINKEVT_CC_PROGRESS_IND

EVT_CC_CONNECT_CONF

EVT_CC_DISC_CONF

EVT_CC_DISC_IND

EVT_CC_CONNECT_IND

EVT_CC_INFO_IND

On hook

MTCC_ConnectRequest

MTCC_DiscRequest

EVT_CC_CONNECT_CONF

Theory of Operation
Call Connection Functions

• 79
FIGURE 8: LOOP START FXS-FXO

U
se

r A
pp

lic
at

io
n

Loop Start FXS-FXO

Call Control

Outgoing

RBS Stack

Incoming

FXS FXO

Call ControlRBS Stack

U
se

r A
pp

lic
at

io
n

MTCC_ConnectResp

Off hook

On hook

DTMF Digits

EVT_CC_PROGRESS_IND

EVT_CC_CONNECT_CONF

EVT_CC_DISC_CONF

EVT_CC_DISC_IND

EVT_CC_CONNECT_IND

EVT_CC_INFO_IND

MTCC_ConnectRequest

MTCC_DiscRequest

EVT_CC_CONNECT_CONF

AudioCodes, Inc.
SmartWORKS Developer’s Guide80 •
NFAS SUPPORT

NFAS (Non Facility Associated Signaling) is a protocol which uses only one or two D
channels while controlling calls on a larger number of trunks. In other words – the
64 kbps D channel (signaling channel) has enough capacity to control up to 14 T1
trunks. The immediate benefit of NFAS is that the number of B channels increases
per system. Trunks which no longer use a single channel for D channel data now
have a total of 24 B channels per trunk.

NFAS only makes sense in a T1 environment. E1 trunks have a dedicated timeslot
for D channel signaling and therefore no saving can be accomplished by
aggregating call control to one D channel.

NFAS is used to control T3 trunks (28 T1’s). Implementing NFAS for PBX is beneficial
only when the PBX supports more then one T1 trunk.

FIGURE 9: LOOP START FXO-FXS

U
se

r A
pp

lic
at

io
n

Loop Start FXO-FXS

Call Control

Outgoing

RBS Stack

Incoming

FXO FXS

Call ControlRBS Stack

U
se

r A
pp

lic
at

io
n

MTCC_ConnectResp

Ring

On hook

On hook

EVT_CC_PROGRESS_IND

EVT_CC_CONNECT_CONF

EVT_CC_DISC_CONF

EVT_CC_DISC_IND

EVT_CC_CONNECT_IND

EVT_CC_INFO_IND

MTCC_ConnectRequest

MTCC_DiscRequest

EVT_CC_CONNECT_CONF Off hook

Theory of Operation
Call Connection Functions

• 81
PASSIVE TAPPING NFAS

A full featured NFAS system has at least two T1 trunks coming from the Central
Office (CO). These trunks are labeled from 0 to N. Trunk number 0 has timeslot 24
reserved for PRIMARY D channel. Trunk labeled 1 has timeslot 24 reserved for D
CHANNEL BACKUP. Other trunks (labeled 2 to N) carry 24 B channels.

If the PRIMARY D channel fails the call control proceeds using D CHANNEL BACKUP.
From time to time the CO may put PRIMARY D channel into maintenance mode and
D CHANNEL BACKUP is used for call control. After maintenance is complete the call
control is switched back to the PRIMARY D channel.

A simplified NFAS installation would use a small number of T1 trunks (usually two).
The first trunk has 23 B channels and a PRIMARY D channel. If the D CHANNEL
BACKUP is not used in this configuration all the remaining trunks will have 24 B
channels.

When configuring the SmartWORKS DP for passive tapping, the Interface ID (or
trunk ID) used by the local PBX, must match the Trunk Index ID on the SmartWORKS
DP board. This enables the DP board to map D-channel events to the correct
Channel ID. If this configuration is done incorrectly, the user application will receive
the wrong Channel, Trunk and Timeslot information for all events.

NFAS GROUP

The NFAS group is defined as a set of one or two trunks carrying D channel with
trunks carrying associated B channels.

NFAS SUPPORT UNDER SMARTWORKS

NFAS support is a standard feature when using the DPxx09 series of cards. Using
SmartControl, users can define one or more NFAS groups. The recommended
configuration consists of a single DP6409 supporting PRIMARY and BACKUP D
channels. The trunk with PRIMARY D channel should be connected to the first
framer, while the trunk with BACKUP D channel to the second framer on the same
DP6409. When monitoring a NFAS group with both PRIMARY and BACKUP D
channels, both trunks must be monitored by the same DP board. These trunks have to
be monitored by the same protocol stack which knows about the state of each trunk.

Additional trunks (voice trunks) within the same NFAS groups may be supported by
other DP6409’s or DP3209’s. A total of 15 trunks can be monitored by a single NFAS
group; with trunk 0 monitoring the Primary D-Channel, trunk 1 monitoring the
Back-Up D-Channel and trunks 2-14 used for voice only.

The next NFAS group should start with another DP6409 board.

NOTES:

• Using a back up D channel is optional, not all NFAS systems are configured
with a backup D channel

• When both Primary and Backup D channel are used on a single NFAS system,
both trunks must be monitored by the same DP board

• All DP boards monitoring a single NFAS group must be installed on the same
host.

AudioCodes, Inc.
SmartWORKS Developer’s Guide82 •
SMARTWORKS CONFIGURATION

Two parameters are used to configure the T1 trunks when monitoring NFAS. When
configuring a trunk - users must supply the Group ID of the monitored NFAS group
- Index ID, and the type of NFAS trunk which is monitored - PRIMARY / BACKUP D
channel or Voice only. All parameters are set with the MTSetAdapterConfig()
function in the MT_ADAPTER_CONFIG data structure. NOTE: These parameters can
also be set with the SmartWORKS Control Panel.

ProtocolSignaling[MAX_TRUNKS] - this array of values (one value per each trunk) identifies
the signaling of the trunk. When monitoring an NFAS trunk the user relies on bit values to
control whether the trunk is a PRIMARY or BACKUP D channel or voice

#define SIGNALING_NFAS 0x80 // NFAS for both T1
#define SIGNALING_NFAS_DCH 0x40 // Extension for NFAS definition
 // - bit 0x40 is for D-channel enable
#define SIGNALING_NFAS_BK_DCH 0x20 // Extension for NFAS definition
 // - bit 0x20 is for backup D-channel enable
#define SIGNALING_NFAS_TRUNK_BITS 0x0F // - the lower nibble is for
unique trunk number within the NFAS indexed TrunkNFASId

Users must also specify the Group ID of the NFAS group. This is used in the bit field
above and with another parameter in the MTADAPTER_CONFIG data structure:

NFASIndex[MAX_TRUNKS];

CONFIGURATION EXAMPLE

In the following example, eight (8) trunks are used by the local network. Two
separate NFAS groups are used by this network, therefore the PBX provides the
following Trunk IDs:

NFAS group 0 consists of Trunk 0 that is used for Primary D-channel, while Trunk 1 is
used for Back-Up. Trunks 2 & 3 carry voice data on all 24 timeslots.

The second NFAS Group - Group 1, is comprised of Trunk 0 which is used for Primary
D-Channel, Trunk 1 which is used for Back-Up D-Channel while Trunks 2 & 3 carry
voice data only.

To monitor this network - a total of four(4) DP6409s are used. Boards 0-1 monitor
NFAS group 0 while Boards 2-3 monitor NFAS group 1.

The following configuration is required:

Board 0:

Signaling is set to NFAS.

NFAS Group / Index is set to 0

DP Trunk ID = 0, Trunk Index = 0, is set to NFAS type = Primary D-Channel

DP Trunk ID = 1, Trunk Index = 1, is set to NFAS type = Back Up D-Channel

Board 1:

Signaling is set to NFAS.

NFAS Group / Index is set to 0

DP Trunk ID = 0, Trunk Index = 2, is set to NFAS type = None

DP Trunk ID=1, Trunk Index = 3, is set to NFAS type = None

Theory of Operation
Call Connection Functions

• 83
Board 2:

Signaling is set to NFAS.

NFAS Group / Index is set to 1

DP Trunk ID = 0, Trunk Index = 0, is set to NFAS type = Primary D-Channel

DP Trunk ID = 1, Trunk Index = 1, is set to NFAS type = Back Up D-Channel

Board 3:

Signaling is set to NFAS.

NFAS Group / Index is set to 1

DP Trunk ID = 0, Trunk Index = 2, is set to NFAS type = None

DP Trunk ID = 1, Trunk Index = 3, is set to NFAS type = None

The following diagram illustrates how to configure multiple DP boards when
monitoring a single system running two NFAS groups:

CHANNEL MAPPING

Once configuration is complete, the SmartWORKS DP board maps all D-channel
events (call control events) to the correct Channel ID, Trunk ID and Timeslot ID. This
information is passed to the user application when a call control event is reported.
Before looking at event reporting, it is important to understand how SmartWORKS
maps D-channel events to correct channel ID.

The following table is based off a network running two NFAS groups with 4 trunks
per each group. The DP boards have been configured according to the example
provided in the previous section of this document:

NOTE: The SmartWORKS DLL does not use a Channel ID for Timeslots with
Primary or Back-UP Dchannel information. Voice channels are counted.

NFAS Group 0

Legend:
D: D-Channel
d: Backup D-Channel
B: Voice

SmartWORKS DP Boards

0 1 2 3
D()d B B NFAS Group 1

Trunk
Index:

0 1 2 3
D()d B B

Trunk
Index:

AudioCodes, Inc.
SmartWORKS Developer’s Guide84 •
Table 10: NFAS Channel Mapping

DP Board
ID

DP
Trunk ID

NFAS
Group

NFAS Trunk
Index

Timeslot
Channel ID
 (GCI = 1)

0 0 0 0
1 1
2 2
3.... 3....
23 23
24 (skipped)

0 1 0 1
1 24
2 25
3...... 26.....
23 26
24 skipped

1 0 0 2
1 47
2 48
3.... 49....
23 69
24 70

1 1 0 3
1 71
2 72
3.... 73....
23 93
24 94

2 0 1 0
1 1
2 2
3.... 3....
23 23
24 (skipped)

2 1 1 1
1 24
2 25
3...... 26.....
23 26
24 skipped

3 0 1 2
1 47
2 48
3.... 49....

3 1 1 3
1 71
2 72
3.... 73....
23 93
24 94

Theory of Operation
Passive ISDN Functions

• 85
EVENT REPORTING

All call control events are reported as Channel events. When a call control event is
reported, the Channel ID is passed to the user application in the Channel field of the
MT_EVENT data structure.

All call control events are passed over with the MT_CC_CALL_INFO data structure.
The ChannelID field contains a data structure that passes over the Trunk ID (NFAS
Trunk Index), as well as the Timeslot number.

The following shows how a call control event is displayed in SmartView:

2006:10:17:15:12:39:934 Ch. 69 EVT_CC_CALL_ALERTING(6e)
Reason 0x0000, xInfo 0x17000000, Buffer: 0x011B6718,
DataLen: 328 Func 0x0--->CallRef=<24919>, Source=<2>
Trunk=<3>, Timeslot=<23> From <> To <5617024167>

MONITORING SELECT TRUNKS

At times, a network may be running a network with 10 trunks in a single NFAS
group, however, the logger is only required to monitor 3 of the 10 trunks.

For example, the network is designed with a single NFAS group comprised of
ten(10) trunks; numbered 0-9 respectively. Trunk 0 is used for Primary D-channel
while Trunk 1 is used for Back-Up. Trunks 2-9 are only transmitting voice data.

The logger is only required to tap phones connected to trunks 4, 6 and 9. In this
scenario five(5) trunks must be connected to the DP boards. Trunks 0 & 1 must be
connected in order to monitor the signaling packets and trunks 4, 6 and 9 for the
voice data.

Though only five(5) trunks are connected to DP boards, the NFAS Trunk Index of
these trunks must still match the trunk Index or Interface ID used by the PBX to
manage these NFAS trunks. The following table illustrates this concept:

Passive ISDN Functions
These APIs are used on the SmartWORKS DP, and the SmartWORKS NGX cards to
control passive ISDN capabilities.

NOTE: The SmartWORKS DP card supports ISDN PRI while the
SmartWORKS NGX supports ISDN BRI.

Table 11: Monitoring Select Trunks

SmartWORK
Board ID

DP Trunk ID
NFAS Group
ID

NFAS Trunk
Index

0 0 0 0

0 1 0 1

1 0 0 4

1 1 0 6

2 0 0 9

AudioCodes, Inc.
SmartWORKS Developer’s Guide86 •
The following API’s are supported on the passive SmartWORKS DP cards for ISDN
support.

The interface to the user application is a two-way interaction:

1 · Call Control indications from the board to the user application

2 · Application requests to the board for information about call Sessions

CALL CONTROL INDICATIONS

When configured for ISDN PRI, BRI or NFAS the following call control events are
generated:

• EVT_CALL_ABANDONED

• EVT_CC_CALL_IN_PROGRESS

• EVT_CALL_CONNECTED

• EVT_CALL_HELD

• EVT_CALL_REJECTED

• EVT_CALL_RELEASED

• EVT_CALL_RESUMED

• EVT_CALL_RETRIEVED

• EVT_CALL_SUSPENDED

When configured for ISDN DASS2 or DPNSS the following call control events are
generated:

• EVT_CALL_ABANDONED

• EVT_CALL_CONNECTED

• EVT_CALL_REJECTED

• EVT_CALL_RELEASED

All these indications are events in the SmartWORKS MT_EVENT structure. When a
channel receives one of these events, the MT_EVENT fields are set as follows (the
subreason field is used for group call on Integral PBXs - see below) :

1 · The TimeStamp field of the MT_EVENT structure indicates a time stamp of when
the event occurred

2 · The EventCode field indicates the CC event code value as defined in the file
NtiEvent.h

3 · The channel field indicates the channel on which the event happened

4 · The PtrBuffer field carries a pointer to an MT_CC_CALL_INFO structure
containing all the available information about the call. This structure is defined
in the file NtiDataCC.h

5 · The DataLength field contains the size of the MT_CC_CALL_INFO structure

Theory of Operation
MT_CC_CALL_INFO Structure

• 87
APPLICATION NOTES -GROUP CALL INFORMATION

For the Integral 33/55 two-wire PBX, information is now processed for a group call
situation.

Call Reference: ALL group calls have the same Call Reference as 0xE4 and the Call
Reference of the ALL real calls MUST be less than 0x80. Use these values to
distinguish real call events and group call events.

SubReason: The SubReason in ALL real calls events is 0x00.

The SubReason in ALL group calls events is the group number plus 0x100.

Use the subreason field to obtain group number.

APPLICATION REQUESTS

The User application may issue requests to retrieve statistics or information about a
channel or a call session. This can be done through the following API functions:

• MTCC_GetStatusByChan()

• MTCC_GetStatusByRef()

Note: Events prefixed with EVT_CC_ typically require user applications to
call MTReturnEventBuffer() passing in MT_EVENT.ptrBuffer to free the
allocated memory. See the Functional Reference Library where
MTReturnEventBuffer() is explained for more information.

MT_CC_CALL_INFO Structure
The MT_CC_CALL_INFO structure is relied on by most APIs used for passive ISDN.

 The MT_CC_CALL_INFO structure is defined in the NtiDataCC.h file and contains
the fields below:.

TABLE 12: MT_CC_CALL_INFO

Type Name Function

ULONG CallRef A unique value assigned by the user’s
application for each call.

ULONG CallSource Only 2 values are possible
MT_CC_INCOMING_CALL or
MT_CC_OUTGOING_CALL

ULONG CallState State of the call. Call states are defined
in the NtiDataCC.h file.
MT_CC_CAUSE values are used for
ISDN while MT_CC_DASS values are
used for DASS2 and DPNSS.

ULONG CallTrunk The trunk where the call occurred.

ULONG CallDuration The total length of the call

ULONG Layer1Coding Layer1 coding on B channel, defined in
NtiDataCC.h file.

AudioCodes, Inc.
SmartWORKS Developer’s Guide88 •
CHANNEL IDENTIFICATION STRUCTURE

The Pref_Excl field is only for terminate products (SmartWORKS).

The InterfaceId field provides the trunk number where the B-channel resides.

The TimeSlot field provides the TDM time slot that is mapped to the SmartWORKS
DP resource channel.

PARTY NUMBER STRUCTURE

ULONG Cause The cause of the last release. Cause types
are defined in the NtiDataCC.h file.

MT_CC_CHANNEL_ID ChannelId This structure is defined on the next
pages.

 MT_CC_PARTY_NUMBER CallerNumber This structure is defined on the next
pages. If no number has been obtained,
the number of digits field = 0.

 MT_CC_PARTY_SUBADDR CallerSubAddr This structure is defined on the next
pages. If no number has been obtained,
the number of digits field = 0.

 MT_CC_PARTY_NUMBER CalledNumber This structure is defined on the next
pages. If no number has been obtained,
the number of digits field = 0.

MT_CC_PARTY_SUBADDR CalledSubAddr This structure is defined on the next
pages. If no number has been obtained,
the number of digits field = 0.

 MT_CC_PARTY_NUMBER ConnectedNumber This structure is defined on the next
pages. If no number has been obtained,
the number of digits field = 0.

MT_CC_PARTY_SUBADDR ConnectedSubAddr This structure is defined on the next
pages. If no number has been obtained,
the number of digits field = 0.

 MT_CC_PARTY_NUMBER RedirectingNumber This structure is defined on the next
pages. If no number has been obtained,
the number of digits field = 0.

MT_CC_CALL_IDENTITY CallIdentity This structure is defined on the next
pages.

TABLE 12: MT_CC_CALL_INFO

Type Name Function

Table 13: MT_CC_CHANNEL_ID

Type Name Function

int Pref_Excl Preferred or Exclusive

int InterfaceId Trunk Number

int TimeSlot Time slot within the trunk

Theory of Operation
MT_CC_CALL_INFO Structure

• 89
This structure is used to indicate the calling party number (also called caller number),
the called party number and the connected number.

* When the board is configured for DASS2 and DPNSS: When this data structure is
used to report ConnectedNumber or RedirectingNumber all fields are set to ‘0’.
When this data structure is used to report CallerNumber, and CalledNumber only
the NumberofDigits and Digits fields are populated.

NOTE: The NumberingPlan and the NumberOfDigits fields are defined in the
NtiDataCC.h file.

SUB_ADDRESS STRUCTURE

This structure is used to indicate the calling party sub-address, the called party sub-
address and the connected sub-address.

NOTE: This data structure is not used when the board is configured for
DASS2 or DPNSS (all fields are set to ‘0’)

SUBADDRTYPE

This field indicates the coding format used for the sub-address. The valid values for
this field are:

MT_CC_SUBADDR_NSAPNSAP /x213 format

MT_CC_SUBADDR_USERUSER Specified format

Table 14: MT_CC_PARTY_NUMBER*

Type Name Function

int TypeOfNumber* Numbering Type :UNKNOWN,
NATIONAL, SUBSCRIBER or
ABBREVIATED

int NumberingPlan* UNKNOWN, NATIONAL,
PRIVATE_PLAN, DATA_PLAN,
TELEX_PLAN

int NumberOfDigits* Gives the size of the digits field.
This field varies from 0 to
MAX_PARTY_DIGITS, which is 32

UCHAR Digits[MT_CC_MAX_PARTY_DIGITS]* The called number digits

Table 15: MT_CC_PARTY_SUBADDR

Type Name Function

int NumberOfDigits The number of digits in called
number. This field varies from 0 to
MAX_PARTY_DIGITS, which is 32

int SubAddrType See below.

int OddEvenInd See below.

UCHAR Digits[MT_CC_MAX_SUBADDR_DIGITS] The called number digits

AudioCodes, Inc.
SmartWORKS Developer’s Guide90 •
ODDEVENIND

The Odd/Even indicator field declares whether the number of digits is odd or even.
It is used when a byte is carrying two digits. The valid values for this field are:

MT_CC_SUBADDR_EVENnumber of digits is odd

MT_CC_SUBADDR_ODDnumber of digits is even

CALL IDENTITY STRUCTURE

* These fields are not used when the board is configured for DPNSS or DASS2.

Channel Functions
The SmartWORKS SDK supports a total of 512 channels. All channels within
AudioCodes boards are numbered using GCI indexing sequentially from 0 or1 to
the number of available channels. The GCI starting value (0 or 1) is controlled by the
user via the SmartControl panel applet.

CALLERID CONTROL

SmartWORKS boards enable caller ID detection by default. How CallerID control is
managed depends on the type of network:

Analog CallerID Control

All SmartWORKS boards can detect in-band CallerID with support for Bell 202 and
V.23 standards. This feature is typically used only on analog networks where
SmartWORKS LD boards are deployed.

There are two events that support the caller ID function: EVT_CALLID_DROPPED
and EVT_CALLID_STOP. The EVT_CALLID_STOP event notifies the application that
the SmartWORKS board has finished retrieving Caller ID data and the received data
is successfully queued. The SubReason field of event EVT_CALLED_STOP contains
the length of the caller ID packet, XtraInfo field contains the first 4 bytes of the caller
ID data packet. Each channel is allowed to queue up to 15 Caller IDs.
EVT_CALLID_DROPPED indicates that good Caller ID information is dropped due to
a full queue.

Each channel can queue up to 15 caller ID packets. Use the API function,
MTGetCallerID() to retrieve Caller ID information.

Table 16: MT_CC_CALL_IDENTITY*

Type Name Function

int Length* The length of the call identity string

UCHAR Identity[MT_CC_MAX_IDENTITY_SIZE* The call identity string

TABLE 17: CALLERID CONTROL

MTDisableCallerID()

MTEnableCallerID()

MTFlushCallerID()

MTGetCallerID()

MTGetCallerIDStatus()

Theory of Operation
Channel Functions

• 91
ISDN CallerID Control

ISDN networks pass CallerID information in Dchannel messages and can be
decoded by SmartWORKS DT, SmartWORKS DP, and SmartWORKS NGX (when
tapping ISDN BRI networks only). All CallerID information is passed to the user
application when call state events are reported.

The SmartWORKS DT reports call state with confirmation and indication events.
Each call control event passes a unique data structure to the user application. When
the EVT_CC_CONNECTED_IND event is reported, the MT_CC_CONNECT_IND data
structure populates two fields: CalledPartyAddr and CallingPartyAddr.

The SmartWORKS DP and NGX boards work passively. Call state is reported to the
user application via call control events. Each event passes over the MT_CALL_INFO
data structure. Two fields are used that indicate CallerID: CallerNumber and
CalledNumber.

To obtain CallerID information use MTSetEventCallback() or
MTSetBoardEventCallback(). ISDN events are reported as channel events on
SmartWORKS DP, SmartWORKS NGX, plus SmartWORKS DT cards configured for
RBS. Otherwise, all ISDN events reported on the SmartWORKS DT card are reported
as board events.

Proprietary Dchannel

When using the SmartWORKS NGX and IPX to tap proprietary PBX environments,
the callerID is passed on the line when the PBX relies on the phone to display the
DNIS number. When Dchannel decoding is supported, both boards are able to
provide callerID on systems where the phones have LCD displays, and the callerID is
displayed on the phone. When the phone’s LCD is updated, the
EVT_MESSAGE_CHANGE is reported and the callerID can be parsed from the buffer.
In order to know which EVT_MESSAGE_CHANGE event contains the callerID
information, the user must observe the behavior of the phone and PBX in order to
learn the event reporting sequence. Refer to the NGX Integration Guide and the IPX
Integration Guide for more information on specific PBX models.

On some networks, the IPX board also provides call control events. When these
events are reported the MT_CALL_INFO data structure contains the CalledNumber
and CallingNumber if available. (Refer to the IPX Integration Guide for details).

DTMF/MF AND TONE CONTROL

SmartWORKS boards are equipped to send and receive DTMF digits, handle
incoming digits, and dial numbers.

Dialing a string is accomplished by passing a string with valid DTMF digits or control
characters and invoking one of the dial functions. Valid digits are 0 - 9 and ABCD#*.
Control characters are as follows:

& - Generates a hook flash (SmartWORKS LD only)

, (comma) - Inserts a pause

T - Switches back to DTMF dialing mode

W - Signals that the SmartWORKS board must wait for a dial tone before dialing the
remainder of the string. (Call Progess Monitoring must be enabled:
MTCPMControl().

H - Take the line OFF_HOOK if it is ON_HOOK (SmartWORKS LD only)

AudioCodes, Inc.
SmartWORKS Developer’s Guide92 •
The function MTDialString() is used to dial a string of digits. MTCallString() is a
background function that automatically calls a number. This function takes the
channel off hook, waits for dial tone, dials the number, and then determines if the
call is answered.

When a SmartWORKS board detects a DTMF digit, the EVT_DIGIT event is issued
with the digit information in the SubReason field. The digit is then stored in a
separate queue (per channel) called the DTMF queue. A digit stays in the queue
until the application discards or retrieves it. If the application never issues a DTMF
retrieval call [MTReadDigit()] the SmartWORKS API will continue to store all
detected digits until the DTMF queue for that channel is full. The DTMF queue is 65
digits deep for each channel. Should a received digit be dropped due to a full
queue the EVT_DIGIT_DROPPED event is issued.

The same applies to AudioCodes boards that support MF tones. Events
EVT_MFTONE and EVT_MFTONE_DROPPED report MF tone detection and queuing.
SmartWORKS boards have the capability to differentiate whether the DTMF or MF
tone is detected on the primary input or the attached secondary input. This
information is also queued along with the tone. Functions MTReadDTMFTone()
and MTReadMFTone() retrieve the queued tone along with the channel
information.

MTClearDTMFDigits() clears the DTMF queue while MTClearMFTones() clears the
MF queue. MTReadDigit(), MTReadDTMFTone(), and MTReadMFTone() return the
next digit/tone in the queue, if there is one.

MTGetDigits() is a background function that receives a string of digits. The
application must pass the address of a buffer where the received digits can be
stored. The required MT_IO_CONTROL structure specifies the termination
conditions. Possible termination conditions are a maximum number of digits, a
certain termination digit, exceeding a time limit, exceeding a time limit between
digits, etc. This function can terminate immediately if a specified termination digit
or number of digits are already in the queue.

Though DTMF detection, event reporting, and queuing are on by default, it’s
possible to reconfigure this setting through function MTControlToneQ() or
MTChInputToneDetectControl() which provides an on/off for tone detection and
queuing.

Automatic Gain Control
Each channel is equipped with an automatic gain control (AGC) function, which is
disabled by default. Use MTSetAGC() or MTChInputSetAGC() to equalize incoming
signals, then MTSetGain() can be used to adjust to the final desired level.
MTSetGain() is an optional step. The APIs - MTSetAGC() and MTSetGain() are
applied after summation. Should mixing be disabled, only the primary input is
affected by these APIs. To control gain on both inputs, use the MTChInputSetAGC()
or MTChInputSetGain() functions.

AUTOMATIC GAIN CONTROL

The operation of AGC is controlled by four parameters:

• Target amplitude

• Maximum Amplification (MA)

• Attack slew rate

Theory of Operation
Automatic Gain Control

• 93
• Decay slew rate

The static transfer characteristics of AGC is shown below.

Figure 5·1: AGC Static Transfer Characteristics

In steady state condition signal with power above the target will be attenuated to
reach target power. Signals with energy lower then target will be amplified to reach
the target level. The amount of amplification is limited by a parameter MA.

MA is programmable from the API in 6 dB steps.

The rate at which the gain changes is controlled by two parameters: attack slew rate
and decay slew rate.

Attack controls the speed of the gain decrease, decay controls the speed of the gain
increase. The attack and decay are programmable from the API in units of 0.00212
dB/millisecond. Changing the Attack and Decay settings are not recommended.

The default settings for AGC are:

Target amplitude (TMA)

-6 dBm

Maximum Amplification (MA)

30 dB

Attack

400

Output (dBm)

Input (dBm)

3.14

3.14

Static Transfer Characteristics

Target

Maximum Amplification

AudioCodes, Inc.
SmartWORKS Developer’s Guide94 •
Decay

4

 The following figure shows the effect of AGC on a test signal.

Figure 5·2: AGC Results

RECOMMENDED GAIN SETTINGS

The following table shows recommended AGC settings for both phone (digital and
analog) and radio networks.

AGC (Automatic Gain Control)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

-.02

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9

0.00.5 0.01.0 0.01.5 0.02.0 0.02.5 0.03.0 0.03.5 0.04.0 0.04.5 0.05.0

Time

Target: 0dBm · Max Gain: 30dB · Attack: 0.848 dB/ms · Decay: 0.01696 dB/ms · Gain: -6dB

 Test Input: Pulse of -6dBm for 250ms followed by pulse of -26dBm for 4s

Time

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

-.02

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9

0.00.5 0.01.0 0.01.5 0.02.0 0.02.5 0.03.0 0.03.5 0.04.0 0.04.5 0.05.0

TABLE 18: RECOMMENDED GAIN SETTINGS

Type of Network
Target

Amplitude
Attack Decay

Maximum
Amplitude

phone -6 400 4 30

Theory of Operation
Automatic Gain Control

• 95
*A small decay is required on a radio network to minimize squelch.

MTSetGain() can be used to adjust the equalized audio level. If MTEnableMixing()
is enabled, this modifies the level of audio after the incoming signal on both the
primary and secondary inputs have been combined.

The APIs - MTSetAGC() and MTSetGain() are applied after summation. Should
mixing be disabled, only the primary input is affected by these APIs. To control gain
on both inputs, use the MTChInputSetAGC() or MTChInputSetGain() functions.

NOTE: MTSetGain() and MTSetAGC() are not recommended when stereo
recording. Should these functions be used, only the primary side will be
affected. Use MTChInputGain() or MTChInputSetAGC() when stereo
recording.

MORE INFORMATION ABOUT AGC

Target Maximum Amplification:

Signals lower than the target level will be amplified and signals higher will be
attenuated.

Maximum Amplification:

The value set will amplify the signal by the MA.

1. If Signal Power + Maximum Amplification equals the Target then the Output
Power will be Target.

2. If Signal Power + Maximum Amplification is greater than the Target, then the
Output Power will be Target.

3. If Signal Power + Maximum Amplification is less than the Target, then the Output
Power will equal the Signal Power + Max Amplification which is less than Target.

REDUCING BACKGROUND NOISE

At times background noise appears on the line when both parties are silent.
Background noise may be described as a loud distortion or hissing that is present in
the recording when both parties are silent. Modifying AGC parameters can reduce
background noise. Background noise is typically at a low energy level. Reducing the
Maximum Amplification parameter limits the allowable gain applied to low level
signals. As a result low energy signals, such as background noise, will not be
amplified to the level defined by the Target Amplitude parameter. The following
diagram illustrates this point:

Figure 5·1: Reducing Background Noise

radio -6 400 1* 30

TABLE 18: RECOMMENDED GAIN SETTINGS

Type of Network
Target

Amplitude
Attack Decay

Maximum
Amplitude

AudioCodes, Inc.
SmartWORKS Developer’s Guide96 •
To effectivly apply gain to voice levels, but reduce background levels the following
settings are recommended:

Target amplitude (TMA)

-6

Maximum Amplification (MA)

18 dB

Background noise is present on the line at a low
signal level. By reducing the amount of allowable
maximum gain, low level signals will not be
amplified to the level defined by the Target
Amplitude parameter.

Attack

400

Decay

4

 Use MTSetGain() to adjust the equalized audio level to the dB required by your
application.

Reducing Background Noise
Maximum Amplification = 18 dB

Target
-12 dBm

Output

Input
-40dBm

Outgoing signal
with gain applied

Incoming signal

-22dBm

-20dBm

Maximum Amplification
threshold has been met

Theory of Operation
Automatic Gain Control

• 97
NOTE: This function is not recommended when stereo recording. Should this
function be used, only the primary side will be affected. Use
MTChInputGain() when stereo recording.

ACTIVITY DETECTION CONTROL

Originally Activity Detection was designed to work in the following way:

• activity detection, when enabled with MTEnableACTD(), only worked on the
primary input of the channel. MTEnableMixing() then MTEnableMixingDe-
tect() was used to enable activity detection on the secondary channel. The
API SetACTDParams() configured activity detection parameters, but the
same values were used for both inputs.

The APIs used to control activity detection were recently enhanced to allow for
configuration on a per input basis.

Users can still control activity parameters with the API MTSetACTDParams().
However, this method is only recommended when activity detection configuration
is the same on both inputs.

To control activity detection on the primary input, do the following:

- MTChInputACTDControl() - enable / disable activity detection

- MTChInputSetACTDParams() or MTSetACTDParams() - configures activity
detection parameters

To control activity detection on both inputs, do the following:

- MTEnableMixing() - combine the primary and secondary inputs

- MTChInputACTDControl() - enables / disables activity detection (per input).
MTEnableMixingDetect() will be obsoleted in Jan. 2005.

- MTChInputSetACTDParams() - configures activity detection parameters on
both the primary and secondary inputs (NOTE: MTSetACTD() can still be used,
but the configuration values will be the same for both the primary and
secondary inputs).

AudioCodes, Inc.
SmartWORKS Developer’s Guide98 •
Global Channel Index Functions
BOARD AND CHANNEL NUMBERING

The SmartWORKS API supports up to 16 physical boards and/or up to 256 full
duplex channels within a system. The API functions refer to a specific board and or
channel within the system using one of two numbering schemes: physical board
numbers, and Global Channel Index (logic channel numbers). All board numbers
are assigned sequentially starting from zero. Channel numbers are assigned
sequentially starting from either 0 or 1 (depending on how the user has configured
this setting in the Smart Control panel). NOTE: The IPX board does not impact
channel numbering as this board does not open with channels.

Certain API functions will allow the developer to reference all boards
simultaneously by using the nBoard = -1.

GLOBAL CHANNEL INDEX

During initialization, as the Physical Boards are numbered, the driver will build a list
of the logical channels available in the system called the Global Channel Index (GCI).
This list is the primary interface the API will use to refer to the channel resources in
the system.

The Global Channel Index (GCI) is numbered sequentially from 0 or 1 (depending on
how the user has configured this setting in the Smart Control panel) and is in
ascending order of the Physical Board numbers. The maximum GCI is currently
limited to 512.

Certain API functions will allow the developer to reference all channels
simultaneously by using the nChannel = -1 (if GCI index = 0) or nChannel = 0 (if the
GCI index = 1).

For Example:

Function MTSetEventCallback() takes channel number -1 or 0, and registers the
callback function for all available channels

GCI FUNCTIONS

The API has a several commands that can be used to determine the relationship
between the GCI and the physical channels on each board. The MTGetGCI() and
MTGetGCIMap() command will match a GCI indexed channel to its physical board
channel location.

For Example:

If MTGetGCIMap(65, pBOARD, pBOARDTYPE, pGCI) returns with *pBOARD=0, and

*pGCI=0, this indicates GCI channel 65 resides on board 0 as its first channel.
However, MTGetGCI(0,0,pGCI) should return with *pGCI=65.

Theory of Operation
Media (IO Control) Functions

• 99
Media (IO Control) Functions
This group of APIs allows the user application to specify its own device read, write,
and seek functionality for reading and writing recorded voice data. This gives the
user application the ability to integrate the SmartWORKS API with a custom device
that supports the Microsoft Windows device interface such as: open(), close(),
read(), write() and seek().

NOTE: The MT_IO_CONTROL data structure is explained, in detail, in the
SmartWORKS Function Reference Library.
MTSetDeviceIO() sets the user device I/O entries within SmartWORKS. The user
device I/O is enabled through MTPlayDevice(), MTPlayDeviceIndex() and
MTRecDevice() with file handle set within MT_IO_CONTRL.FileHandle field. It is the
user application's responsibility to open associated file before enabling the
SmartWORKS media function to access the file through device IO API functions.

Following is a list of Media Control API functions:

TABLE 6: MEDIA CONTROL
MTGetStreamingConfig()

MTPlayBuffer()

MTPlayBufferAsync()

MTPlayBufferEx()

MTPlayDevice()

MTPlayDeviceAsync()

MTPlayDeviceEx()

MTPlayFile()

MTPlayFileAsync()

MTPlayFileEx()

MTPlayIndex()

MTRecBuffer()

MTRecBufferAsync()

MTRecBufferEx()

MTRecDevice()

MTRecDeviceAsync()

MTRecDeviceEx()

MTRecFile()

MTRecFileAsync()

MTRecFileEx()

MTSetDeviceIO()

MTSetStreamingConfig()

MTStartStreaming()

MTStopStreaming()

MTStreamBufIn ()

MTStreamBufOut ()

MTStreamBufPause ()

MTStreamBufResume ()

AudioCodes, Inc.
SmartWORKS Developer’s Guide100 •
Play/Record Functions
Record and playback are background functions that are queued for execution in the
order of their arrival. Functions are separated to an encode or decode queue.

For record functionality, the SmartWORKS API starts encoding when a record
request is queued and stops the encoding when all queued requests are filled.
Should the recording media format differ from one request to the next, the
encoding will be reset and restarted on the execution of the request with the new
media format. The APIs for record are MTRecBuffer() and MTRecFile().

The same applies to playback functionality. APIs for playback are MTPlayBuffer()
and MTPlayFile().

All queued record and playback requests can be deleted through function
MTStopCurrentFunction() or MTStopChannel(). When an application terminates a
playback function manually with the MTStopChannel() function, then the data
remaining in the SmartWORKS board hardware buffer is flushed.

MEDIA CONTROL

The SmartWORKS Media Control interface makes it possible to encode and decode
audio voice data to and from the host system. The Media Control interface has two
basic modes of operation: file mode or data-streaming mode. When using file
mode, the Media Control interface manages all file I/O overhead and will record or
play voice data directly to disk. In the data-streaming mode, voice data is passed to
buffers, which the application must manage.

INDEXED FILE PLAYBACK

A special playback mode is the indexed playback. With the MTPlayIndex() function,
the application passes a file handle to the API, as well as a table of file offsets and
byte counts. This table describes blocks of data from the file that should be played
back in the order described. This is used for playing messages, prompts, and spoken
numbers.

A simple indexed number file can consist of recordings of the numbers zero
through nine, preceded by a table of indexes and block sizes where those
recordings can be found. When the application wants to pronounce a phone
number, it builds an index table of the desired numbers to playback. The built table
is passed to the driver, which will play the blocks from the file in the specified order.
The MTPlayIndex() function is provided to eliminate the overhead of opening and
closing separate files for each digit to pronounce, as well as to facilitate smooth
transitions between the blocks.

STEREO RECORDING

The SmartWORKS stereo media format allows for recording of synchronized signal
samples from both the primary and secondary inputs of a channel.

USAGE

Stereo format has two options:

MT_PCM_µLaw_Stereo
MT_PCM_ALaw_Stereo

Stereo format belongs to a class of encoders supported by SmartWORKS and is one
of the components of the MT_IO_CONTROL structure used by media recording
functions (record, stream).

Theory of Operation
Play/Record Functions

• 101
DESCRIPTION

The PCM data from both the primary and secondary inputs are converted into linear
format. Data from each channel is processed by AGC (if enabled) and by a gain
stage (independent for primary and secondary input). The processed data is
encoded into either A-law or mu-law byte. The resulting two bytes are combined
into one 16-bit word with sample from primary input located in the low byte and
sample from secondary input in the high byte. The 16-bit sample is then passed to
the API.

When a file encoded in stereo format is played using GoldWave or CoolEdit player,
the primary input will appear on the left channel the secondary will be on the right.

Please refer to the DSP logical channel model for more information on primary and
secondary channels as well as AGC and gain blocks.

ENERGY TAGGING

Most recording applications require mixing and compressing the audio for reduced
storage requirements, but also need to retain information to determine which
portions of the audio come from which input. Energy tags, included in the audio
stream, provide the ability to separate the audio in all cases except where both
speakers are active simultaneously.

Energy tagging is available when recording with SmartWORKS DP, NGX and PCM
boards. The energy tagging feature provides both the primary and secondary input
power every frame. The power is reported with two bytes put at the beginning of
each compressed audio packet. The primary input signal (first byte) comes from
the PBX (or CO) and the secondary input (second byte) comes from the agent side
(or CPE).

Energy tagging is available for G.723.1 (5.3 kbps), mu-law and A-law. The power will
be averaged over the duration of the speech sample (or frame). Specifically for
G.723.1 the power will be calculated over the frame length of 30 ms and for mu-law
and A-law the sample interval is 20 ms. All calculations occur after highpass filtering
(when enabled). The following rules apply:

• Three codecs have been added that support energy tagging:
MT_PCM_uLAW_POWER
MT_PCM_ALAW_POWER
MT_G723DOT1_5300_FIX_POWER

• These CODECs are available for encode only

• These CODECs are available for streaming, record to file and record to buffer

Energy tagging creates an 8-bit value representing the power on a channel. Power
is measured at the output of the high-pass filter, so DC power and low frequency
noise is not included if the filter is enabled. The value is biased so that the value
0xEF approximately represents a milli Watt. Therefore, if "x" is the value of the
energy tag when treated as an unsigned 8-bit integer (so 0 <= x <= 255), then the
approximate power on the channel is 0.376 * x- 89.9 [dBm].

• Power range: from –89.9 dBm to +3 dBm.

• Power measurement resolution: 1 dB.

• Byte location: the first two bytes in a frame.

AudioCodes, Inc.
SmartWORKS Developer’s Guide102 •
RECORD FUNCTIONS

Record and playback are background functions that are queued for execution on
the order of their arrival to either encode queue or decode queue separately.

For record functionality, the SmartWORKS API starts the encoding when a record
request is queued and stops the encoding when all queued requests are filled.
Should the recording media format differs from one request to the next, the
encoding will be reset and restarted on the execution of the request with the new
media format. The APIs for record are MTRecBuffer() and MTRecFile().

The same applies to playback functionality. APIs for playback are MTPlayBuffer()
and MTPlayFile().

All queued record and playback requests can be deleted through function
MTStopCurrentFunction() or MTStopChannel(). When an application terminates a
playback function manually with the MTStopChannel() function, then the data
remaining in the SmartWORKS board hardware buffer is flushed.

MEDIA CONTROL

The SmartWORKS Media Control interface makes it possible to encode and decode
audio voice data to and from the host system. The Media Control interface has two
basic modes of operation: file mode or data-streaming mode. When using file
mode, the Media Control interface manages all file I/O overhead and will record or
play voice data directly to disk. In the data-streaming mode, voice data is passed to
buffers, which the application must manage.

DATA STREAMING

Instead of specifying the size of a recording, the application program could use a
streaming function to enable voice data buffering. Then use stream in and stream
out API functions to copy and queue voice block one by one until the application
disables the streaming operation.

SmartWORKS API functions for streaming control are MTSetStreamingConfig(),
MTStartStreaming() and MTStopStreaming(). The record and playback equivalent
APIs are MTStreamBufIn() and MTStreamBufOut(). Additional decode control APIs
are MTStreamBufPause() and MTStreamBufResume().

Start streaming enables API internal buffering. The default internal buffer size is
64K, which would buffer about 8 seconds of 8-bit PCM encoded voice. This internal
buffer size can be changed through MTSetStreamingConfig(). When the internal
buffer overflows, the application will be notified through event
EVT_STREAMIN_DROPPED. No new voice data will be queued until the application
issues an action to retrieve the queued data. Event EVT_STREAMOUT_EMPTY
notifies the user application that the decode playback streaming is short of voice
data and silence is played.

A watermark can be set when streaming is started. If set, event
EVT_STREAMIN_WATERMARK or EVT_STREAMOUT_WATERMARK will be issued as
an indication of streaming progress.

When streaming is used with termination (specified through MT_IO_CONTROL
parameter), data buffering will stop when termination occurs. NOTE: MaxBytes and
MaxTime cannot be used for termination limits when streaming. A termination
event is issued. Both streamed data and the streaming buffer are kept until the user
application either retrieves all streamed data or issues a stop streaming to flush the
streamed data. Streaming buffer will be released in both cases. The return code for
MTStreamBufIn() will be MT_RET_SERVICE_STOPPED or

Theory of Operation
Activity Detection

• 103
MT_RET_SERVICE_NOT_STARTED to indicate that all data in streaming buffer has
been read out and streaming task is now relinquished. For example, say a streaming
task is started with silence termination set to 500 milli-second. At the detection of
500 milli-seconds of no activity, termination event of EVT_TERMSILENCE will be
issued and the collection of data will stop. However, all the previously collected
data are still kept in the streaming buffer. Users should invoke MTStreamBufIn()
until one of the following return codes is reported: MT_RET_SERVICE_STOPPED or
MT_RET_SERVICE_NOT_STARTED.

For example:

Assume that the size of data left in the streaming buffer is 40K at the time of silence
detection, if the user application issues MTStreamBufIn() with a 32K buffer, then
32K of the streamed data will be moved into user buffer, the return code for
MTStreamBufIn() will be MT_RET_OK while the channel status remains streaming.
On the next call of MTStreamBufIn() call, only 8K of streamed data will be moved
into user buffer, and the return code will be MT_RET_SERVICE_STOPPED or
MT_RET_SERVICE_NOT_STARTED. At the completion of the second call of
MTStreamBufIn(), the streaming task along with the associated streaming buffer is
released from SDK. The event EVT_STREAMIN_STOP is reported. At this time the
channel status returns to idle.

NOTE: The SmartWORKS DLL limits buffer size: maximum streaming buffer
size is set to 1MBytes, minimum cap to 1KBytes.

Activity Detection
The Activity detector measures input signal energy in a 20 ms sample. The energy
measurement is then converted to average power and the result is compared
against two programmable thresholds:

• The silence threshold (MT_ACTPARAMS.threshold_low)

• The activity threshold (MT_ACTPARAMS.threshold_high)

where MT_ACTPARAMS.threshold_high must be greater than or equal to
MT_ACTPARAMS.threshold_low.

AudioCodes, Inc.
SmartWORKS Developer’s Guide104 •
The result of this comparison is processed by the ACT state machine. This machine
has three states:

• StReset

• StSilence

• StActivity

When the detector is disabled, it is held in stReset. Enabling the detector causes it to
change to the stSilence state, the Silence Timer to be started from zero, and the
Activity Timer to remain reset. Disabling the detector puts it in the stReset state.

Whenever the detector is in the stSilence state and the silence timer reaches the
Maximum Silence Duration (MT_ACTPARAMS.max_silence), the silence timer is
restarted from zero. If Activity Detection events are enabled, a Maximum Silence
Period Detected (EVT_MAX_SILENCE) event is issued with SubReason field
containing the value of the silence timer before it was restarted.

Whenever the detector is in the stActivity state and the activity timer reaches the
Maximum Activity Duration (MT_ACTPARAMS.max_activity), the activity timer is
restarted from zero. If Activity Detection events are enabled, a Maximum Activity
Period Detected (EVT_MAX_ACTIVITY) event is issued with a SubReason field
containing the value of the activity timer before it was restarted.

Whenever the detector is in the stSilence state, and the measured input signal
energy remains above MT_ACTPARAMS.threshold_high for the Minimum Activity
Duration (MT_ACTPARAMS.min_activity), the detector changes to the stActivity
state, the activity timer is restarted from timActivityMinimum, and the silence timer
remains reset. If Activity Detection events are enabled, a Minimum Activity Period
Detected (EVT_MON_ACTIVITY) event is issued with SubReason field containing the
value of the silence timer when the energy level crossed above the threshold.

Whenever the detector is in the stActivity state and the measured input signal
energy remains below MT_ACTPARAMS.threshold_low for the Minimum Silence
Duration (MT_ACTPARAMS.min_silence), the detector changes to the stSilence
state, the silence timer is restarted from timSilenceMinimum, and the activity timer
remains reset. If Activity Detection events are enabled, a Minimum Silence Period
Detected (EVT_MON_SILENCE) event is issued with a parameter containing the
value of the activity timer when the energy level crossed below the threshold.

Theory of Operation
Activity Detection

• 105
Legend

Minimum Activity Interval MTACTPARAMS.min_activity

Minimum Silence Interval MTACTPARAMS.min_silence

Programmable Hysteresis MTACTPARAMS.threshold_high &
MTACTPARAMS.threshold_low

API CONTROL

Originally Activity Detection was designed to work in the following way:

• activity detection, when enabled with MTEnableACTD(), only worked on the
primary input of the channel. MTEnableMixing() then MTEnableMixingDe-
tect() was used to enable activity detection on the secondary channel. The
API SetACTDParams() configured activity detection parameters, but the
same values were used for both inputs.

The APIs used to control activity detection were recently enhanced to allow for
configuration on a per input basis.

Users can still control activity parameters with the API MTSetACTDParams().
However, this method is only recommended when activity detection configuration
is the same on both inputs.

To control activity detection on the primary input, do the following:

AT

ST

State Silence SilenceActivity
Time

Power (dBm)

Pro
gra

m
m

able

Hyste
re

sis

M
in

im
um

 A
ctiv

ity

In
te

rv
al

M
in

im
um

 Sile
nce

In
te

rv
al

Legend:
AT · Activity Threshold (dBm)
ST · Silence Threshold (dBm)
Hysterisis · Difference between AT and ST (dB)

Activity Detection

Activity
Detected

Silence
Detected

Audio Signal

AudioCodes, Inc.
SmartWORKS Developer’s Guide106 •
- MTChInputACTDControl() - enable / disable activity detection

- MTChInputSetACTDParams() or MTSetACTDParams() - configures activity
detection parameters

To control activity detection on both inputs, do the following:

- MTEnableMixing() - combine the primary and secondary inputs

- MTChInputACTDControl() - enables / disables activity detection (per input).
MTEnableMixingDetect() will be obsoleted in Jan. 2005.

- MTChInputSetACTDParams() - configures activity detection parameters on
both the primary and secondary inputs (NOTE: MTSetACTD() can still be used,
but the configuration values will be the same for both the primary and
secondary inputs).

Loop Voltage / Loop Current / Ring Detect Functions
An explanation of Loop Voltage / Current on SmartWORKS boards

The following provides an overview of how loop voltage / current is managed when
using the SmartWORKS API.

SMARTWORKS LD CARDS

LD can detect both loop voltage change and loop current change.

Loop Voltage:

LD provides user the configuration capability to set the thresholds of voltage high
and voltage low. This allows custom definition of the three loop voltage states of
ABOVE, BELOW, and MIDDLE (e.g. ONHOOK, REVERSE, and OFFHOOK states are the
common terms for ABOVE, BELOW, and MIDDLE states). With LD’s capability of
detecting the three states of loop voltage change, LD can detect the presence of a
wink, a state PT channel cannot detect. LD can also provide current voltage reading,
a capability PT channel does not have.

De-Bouncing:

The specification of de-bouncing time for ring and loop is implemented through
data structure MT_PSTN and APIs of MTSetPSTNParams() and
MTGetPSTNParams(). Data field ring_deglitch specifies the ring de-bouncing time,
and field loop_deglitch specifies the loop current de-bouncing time for AT channel
and the loop voltage de-bouncing time for PT channel.

 Since LDA detects both loop current and loop voltage, the SDK needs supports the
case where the de-bouncing time for loop current and loop voltage differs. A set of
APIs for get and set loop voltage parameters are used: MTSetLVParams(),
MTGetLVParams().

Line Status:

Line status for LD card will be represented through status bit LINE_ONHOOK,
LINE_POLARITY(0 for normal; 1 for reversed), LINE_NO_LOOP, and
LINE_NO_LVOLTAGE_MIDDLE.

Event Filtering:

Theory of Operation
Loop Voltage / Loop Current / Ring Detect Functions

• 107
For LD channels, the possible yielding events are EVT_LVOLTAGE_ABOVE,
EVT_LVOLTAGE_BELOW, or EVT_LVOLTAGE_MIDDLE (i.e.
EVT_LVOLTAGE_OFFHOOK). Event filtering of SE_LCURRENT_CHANGE yields events
of EVT_LOOP_ON, EVT_LOOP_DROP, and EVT_LOOP_REVERSE. Event filtering of
SE_LREV is obsolete and not supported for the loop current or loop voltage polarity
change states are already included in SE_LVOLTAGE_CHANGE and
SE_LCURRENT_CHANGE filtering.

Line Polarity:

Line polarity monitoring, through API MTSetMoni() of MONI_REVERSAL bit is
implemented on the LD by adding a new event EVT_MON_REVERSAL during
detecting of state EVT_LOOP_REVERSE or EVT_LVOLTAGE_BELOW.

For events that indicates a loop current or voltage state change, the information of
the current state, the previous state and the duration of the previous state are
presented through field MT_EVENT.SubReason and MT_EVENT.DataLength:

CurrentState:

the least significant byte of field MT_EVENT.SubReason;

PreviousState:

the second least significant byte of field MT_EVENT.SubReason;

DurationOfPreviousState:

the value in MT_EVENT.DataLength times 125 micro-seconds

Event filtering of SE_WKRECV will not be implemented in SDK. User application can
determine the presence of a WINK based on the above timing information from
events.

API MTWink() does not apply to LD channel for it can generate a hook flash, not a
wink.

Loop Termination:

The loop termination supported for media tasks are TERM_LOOP_DROP and
TERM_LVOLTAGE_ABOVEORBELOW (i.e. TERM_LVOLTAGE_NOTOFFHOOK). The
starting of a media task based on START_LVOLTAGE_MIDDLE (i.e.
START_LVOLTAGE_OFFHOOK) implies the termination on
LVOLTAGE_ABOVEORBELOW (i.e. LVOLTAGE_NOTOFFHOOK). The starting of a
media task based on START_LOOPON implies the termination of LOOP_DROP.
Termination TERM_LOOP_DROP and TERM_LVOLTAGE_ABOVEORBELOW is
allowed one at one time on a LD channel. Media starting control of
START_LVOLTAGE_MIDDLE and START_LOOPON is allowed one at one time on a
LDA channel.

Also, in loop start settings where the tip is grounded and the ring is –48V, the
normal loop polarity detection on LDA is ABOVE, BELOW and MIDDLE. However, in
ground start settings where the ring is grounded and the tip is at 48V, the detection
will be reported reversed as stated above. An API (MTSetReverseLoopPolarity()) is
needed to report the same in ground start environment.

AudioCodes, Inc.
SmartWORKS Developer’s Guide108 •
Firmware Functions
User applications can use the SmartWORKS API to update a board’s firmware. The
following rules must be adhered to:

• These APIs cannot be used with the SmartWORKS NGX

• In the event of error during the Update Flash operation, the user must restart
the driver

• These APIs are declared in a separate header file: NtiWFAPI.h

• The application performing the firmware upload process must have exclusive
access to the board. Multiple applications cannot be running when this func-
tion is initiated

• It is recommended that the application invoking MTWFUpdateFirmware() is
a stand alone application. This API checks for any open threads on the board
before flashing the firmware. If any are found an error message is returned

• It is recommended that all applications with access to this board invoke
MTCloseBoard() before MTWFUpdateFirmware() is invoked

The diagram on the following page illustrates the steps required when updating a
board’s firmware:

Theory of Operation
Firmware Functions

• 109
MTWFInit()
 Initialize the process

MT_RET_OK?

MT_RET_LIB_LOAD_FAILED NO

YES

MTWFUpdateFirmware()
 Begin the update

MT_RET_IO_PENDING?

YES

NO

MTWFGetUpdatingStatus()
 Check Progress

Percentage =
100?

NO

YES

MTWFUninit()
 Uninitialize the process

Only this
application
is running?

YES

NO

Flashing a board using the SmartWORKS API
Note: In this scenario MTWFUpdateFirmware() is running as a background function

Stop all applications and
restart board drivers

MT_RET_INVALID_BOARD
MT_RET_INVALID_FILENAME
MT_RET_INVALID_BINFILE
MT_RET_INCOMPATIBLE_BIN_FILE
MT_RET_LIB_LOAD_FAILED
MT_RET_BOARD_INUSE
MT_RET_NO_MEM

AudioCodes, Inc.
SmartWORKS Developer’s Guide110 •

A
Architecture Overview 17
B
Board Numbering 20
Board Type Naming 34
C
Call Connection Functions 65
Channel Numbering 20
Contact Ai-Logix 7
D
Data Structures 51
Developers Note 16
E
Environment 12
Event Codes 51
Event Control 29, 44
F
Figure

AGC Results, 94
AGC Static Transfer Characteristics, 93

Flow Control 43
Function Completion 27
Function Types 26
M
Media Format Naming 32
Media Formats 31
Microsoft IDE debug mode 12
MT_IO_CONTROL 52
N
NV_Wrap.h 16
P
Pointer Checking 28
Preliminary Information 11, 53
R
Resource Queues 26
Return Codes 28, 49
S
SDK Contents 12, 13
SDK Developer’s Notes 12
SDK Overview 12
SDK System Requirements 12
SmartControl Applet Load Status 13
SmartView Load Status 13
System Overview 12
U
UNICODE Support 29
W
Wave File Support 31
Windows Event Viewer 38

	TOC
	Welcome
	Legal Notice
	About This Documentation
	Release Update History
	SmartWORKS 3.11
	SmartWORKS 3.10
	SmartWORKS 3.9
	SmartWORKS 3.8
	SmartWORKS 3.7
	SmartWORKS 2.10.0

	Document Version Control
	Contacting AudioCodes USA
	Technical Support
	Sales and General Information
	Mailing Address-USA

	SmartWORKS Overview
	SDK Overview
	System Requirements
	Developer’s Notes
	Microsoft IDE debug mode
	Preventing Errors During Shutdown

	Ensuring the SDK is Operational
	Checking the Driver Status
	Running the SmartView Demo Application
	SmartControl Status
	Troubleshooting during Installation

	SDK Contents
	Applications
	Folders and Files
	Drivers

	Ensuring User Application Compatibility with the SDK
	Plug and Play (PNP) Capabilities

	Architecture Overview
	The SmartWORKS Channel Model
	TDM bus
	DTMF, MF, Activity Detection
	Input Mixer
	AGC
	Gain
	Volume
	AVC
	Live Monitor
	Encoders/Decoders
	Host Interface
	Tone Generator

	Board and Channel Numbering
	Physical Board Numbering
	Adding a New Board to the System
	Controlling Board Numbering

	Board and Channel Numbering
	Global Channel Index
	Definition of NI, DR, and Channel
	CT Bus TimeSlot Allocation

	API Overview
	API/DLL Structure
	SmartWORKS Function Types
	Immediate and Background Functions
	Immediate Functions
	Background Functions

	Resource Queues
	Parameters
	Changing Settings
	Preserve Data Buffer

	Function Completion Notification
	Overlapped Events
	Asynchronous Callbacks

	NULL Pointer Checking
	Return Codes
	Event Control

	UNICODE Support
	Media Formats
	Wave File Support
	Wave File Playback

	Media Format Naming

	MF Detection
	R1 MF DIGITS
	R2 MF Digits

	Board Type Naming
	Windows Event Viewer

	Writing An Application
	Getting Started
	Important Note for Linux Developers
	SmartWORKS Flowchart

	Event Control
	Polling
	Call back Function

	System Wide Definitions
	Return Codes

	Using Data Structures
	Zero Out Parameters

	Theory of Operation
	Overview
	System Functions
	System Configuration
	System Information
	Sync Host/Board Time

	Board Functions and Configuration
	Board Control
	Board Information Functions

	Board Identification
	Locating Boards in a Chasis
	Using a Board’s Thumbwheel (NGX only)
	Obtain Board’s Serial Number
	OEM Identification

	Board Configuration
	Board Configuration Functions
	Setting the Board’s Clock Source

	Board Firmware Functions
	Managing Board Events
	Putting an Event on the Board Queue

	Channel Control and Information Functions
	Channel Control Functions
	Opening and Closing Channels
	Managing Background Functions
	Channel Configuration
	Setting Channel to Default

	Channel Numbering (GCI) Functions
	Channel Information & Statistics
	Runtime Information
	Runtime Errors

	Channel Event Reporting
	Priority Events
	Controlling Event Queues
	Controlling Event Reporting
	Putting an Event on the Channel Queue

	Call Connection Functions
	SmartWORKS Call Control API
	Call Processing
	Incoming Calls
	Outgoing Call
	Application Initiated Call Clearing
	Network Initiated Call Clearing
	Events Generated when Passive Monitoring

	ISDN Standards
	Supplementary Services for ISDN Terminate Support
	Basic Call Setup

	SmartWORKS RBS Signaling Protocols
	Robbed Bit Signaling

	NFAS Support
	Passive Tapping NFAS
	NFAS group
	NFAS support under SmartWORKS
	SmartWORKS Configuration
	Channel Mapping
	Event Reporting
	Monitoring Select Trunks

	Passive ISDN Functions
	Call Control Indications
	Application Notes -Group Call Information
	Application requests

	MT_CC_CALL_INFO Structure
	Channel Identification Structure
	Party Number Structure
	Sub_Address Structure
	SubAddrType
	OddEvenInd
	Call Identity Structure

	Channel Functions
	CallerID Control
	DTMF/MF and Tone Control

	Automatic Gain Control
	Recommended Gain Settings
	More Information about AGC
	Reducing Background Noise
	Activity Detection Control

	Global Channel Index Functions
	Board and Channel Numbering
	GCI Functions

	Media (IO Control) Functions
	Play/Record Functions
	Stereo Recording
	Energy Tagging
	Record Functions
	Data Streaming

	Activity Detection
	API Control

	Loop Voltage / Loop Current / Ring Detect Functions
	SmartWORKS LD Cards

	Firmware Functions

