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1 Introduction

Goal-Based Rule Learning is used to derive a meaningful strategy in domains
that require search and are usually solved by a computer better than by a human
(e.g. 8-puzzle game, scheduling, game playing, etc.). A strategy is an ordered
list of goals that lead to the solution of the problem, when they are achieved in
exact order. These goals can then be used to teach a human, who is incapable of
extensive searching, how to act in these domains and still be able to solve these
problems simply by following suggested goals.

The most natural application of Goal-Based Rule Learning is in game playing,
especially chess. Nowadays, computer programs can beat the world champion in
chess mainly due to the capability of searching very deep. However, are there any
goals, patterns, or concepts in the computer’s play that humans are not aware of
them yet? Would knowing these goals improve humans play? Another possible
application is in problem solving that requires complex search. For example, in
the classic task of finding a way out of a maze, the question would be: what is
the best strategy that would, on average, quickly bring me to the exist of the
maze without searching exhaustively.

We start with a definition of Goal-Based Rule Learning, and in the following
section describe our Gabriel algorithm. In the fourth section, we shall extend
the basic Gabriel algorithm with some of the ideas from argument-based ma-
chine learning (ABML), the new method is called AB-Gabriel. AB-Gabriel
enables efficient elicitation of expert knowledge and uses this knowledge to im-
prove the quality of induced strategies.

2 Goal-Based Rule Learning

Goal-based rules learning can be used to extract strategies in specific type of
problems that can be represented with a graph of states, often called state space.
A particular problem is defined with a start state S0 and a goal condition. The
task is to find a plan that brings you from the start state to a state where the
goal is achieved. A solution path is a list of states {S0, . . . , Sn}, where the goal
must be achieved in Sn and transition between succeeding states is possible by
a single move.

Sometimes searching exhaustively for a solution is too complex even for a
computer. In such cases, we need a heuristic function h that can approximately



order states by their “closeness” to the solution state. We shall assume that h
assigns a value to each state and that lower values characterise states closer to
the solution.

We define learning goal-based rules as:

– Given (some) solution paths and a heuristics h
– Induce an ordered set of rules of form:

IF preconditions THEN goal

The complete learning data for machine learning is therefore a set of states,
where each of these states occured in one of the provided solution paths. Each
state is acting as a learning example and is described with a vector of attributes
that correspond to some well-known domain concepts. For example, in chess, we
often use attributes like kdist (distance between both kings) or edist (distance
of black king from nearest edge).

The rule’s preconditions and goal are both expressed in terms of these at-
tributes. Term preconditions is a conjunction of simple conditions, in rule learn-
ing often referred as selectors, that specify the required value of an attribute,
for example kdist = 3 or a threshold on an attribute value, e.g. kdist > 3. Simi-
larly, a goal is a conjunction of subgoals, where a subgoal can specify the desired
value of an attribute (e.g. kdist = 3), any of four possible qualitative changes
of an attribute given the initial position: decrease, increase, not decrease, not
increase or its optimisation: minimise, maximise. For example, a subgoal can
be “ decrease kdist” (decrease distance between kings). In case of a discrete
attribute, a subgoal can only specify the target value of this attribute.

The resulting rules are defining a procedure for finding a solution in the
selected problem. An example rule could be:

IF edist > 1 THEN decrease kdist

The rule can be interpreted as: “if black king’s distance from the edge is larger
than 1 and a decrease in distance between kings is possible, then reach this goal:
decrease the distance between kings.” Note that there is an important difference
between semantics of goal-based rules and classical if-then rules. A normal if-then
rule triggers if the preconditions are true, while a goal-based rule triggers only
if the goal is actually achievable (exact definition of when a goal is achievable is
described in the following section). In other words, even if all preconditions are
true for a position, it is not necessary that this rule will cover the position. The
new redefined cover relation is: a goal-based rule R covers a state s if:

– the preconditions of rule R are true for s, and
– goal of R is achievable in s.

2.1 Hierarchy of Goals and Achieving a Goal

In the definition of covering relation, we mentioned that a goal must be achiev-
able. We say that a goal G is achievable in a selected example, if we can execute



the goal G or any of the relevant goals above G in the rule set, where a goal
is relevant if its rule preconditions are true for the particular learning example.
Such a hierarchical structure assumes that attaining a goal higher on hierarchy
is always better than attaining a goal positioned lower. For example, in chess
endings, if the goal is to push the defender’s king towards the edge and the
defender resists the goal by allowing the opponent to deliver checkmate (that
would not be achievable without the opponent’s help), player should be content
by mating the opponent, as the mate goal is higher on hierarchy than decreasing
edge distance.

In the basic type of search problems, where the task is to find a path from a
start node to a goal node, the hierarchy is not relevant. I a higher goal can be
achieved, the the current one will not even be considered. However, in problems
where a disjunction between goals is required (e.g. AND/OR graphs or 2-player
games, where minimax is used), the higher and the current goals by itself only
might not be achievable, however they are, when applied together.

2.2 Evaluation of a Goal

If a goal is achievable, we would like to know how good it is in a given position. We
evaluate the goal by its worst possible realization in terms of heuristic evaluation
of the final state in the search tree. Formally, goal’s quality q(g, s) in state s
is defined as the difference between starting heuristic evaluation and heuristic
evaluation in the worst realization of the goal: q(g, s) = h(sworst)−h(s). We say
that a goal is good for a state s if its worst realization reduces the distance to
solution, i.e. if q(g, p) < 0; otherwise the goal is bad.

2.3 Evaluation of a Rule

The quality of a rule R is directly related to the quality of its goal on learning
examples covered by the rule. Let p be the number of covered examples where
the goal is good and n number of all covered examples. Then, the quality is
computed using Laplacian formula of probability:

q(R) =
p + 1
n + 1

(1)

2.4 Special Types of Heuristic Functions

In certain domains, we can search the complete state space and compute for
each state its minimal distance to the goal state. For example, such “heuristics”
is available for many chess endgames in the form of tablebases. Tablebases en-
able optimal play in the sense of shortest win against best defence. However,
the resulting play using tablebases is difficult or occasionally impossible to un-
derstand by humans. Our approach can detect subgoals in the optimal play and
hence explain the human optimal game with some basic concepts.



Algorithm 1 Pseudo code of the Gabriel goal-based rule learning method.
Procedure GABRIEL(Examples ES)

Let allRules be an empty list.
while ES 6= ∅ do

Let seedState be FindBestSeed(ES, ruleList).
Let goals be DiscoverGoals(seedState, ES, ruleList).
Let rule be LearnRule(goals, seedState, ES, ruleList).
Add rule to allRules.
Remove examples from ES covered by rule.

end while
Return allRules.

Another type of heuristics is derived from solution paths only. This is useful
when devising a heuristic function is relatively hard, however a human can reach
a solution quite easily. Here, the heuristic value of a state is defined as the
number of moves that was needed to reach the goal state in the given solution
path. If a state is not mentioned in any of the solution paths, then its heuristic
value can simply be the maximum possible value. Here, the search mechanism
for evaluating goals will always try to reach one of the “known” positions in
solution paths and the resulting rules will describe what goals did the human
have in mind while solving this problem.

3 The GABRIEL Algorithm

The pseudo code of our goal-based rule learning method Gabriel (a mnemonic
for Goal-Based Rule Learner) is shown in Alg. 1. The learning loop starts by
selecting a seed state, which is then used in the following calls to procedures
DiscoverGoals and LearnRule. The DiscoverGoals procedure finds most favorable
goals for the seed state and then LearnRule induces one rule for each possible goal
and returns the most appropriate rule.1 The idea of seed examples and learning
rules from them was adopted from the AQ series of rule-learners developed by
Michalski[4], and is especially useful here, since discovering a goal is a time
consuming step. Learned rule is afterwards added to the list of all rules allRules
and all examples covered by this rule are removed from the learning examples.
The loop is stopped when all learning examples have been covered.

3.1 Procedure: FindBestSeed

As mentioned above, a goal is always evaluated together with goals that are
higher on the hierarchy, therefore we desire to have goals sorted by importance;
the most important goal should be the first in the hierarchy. We speculate that

1 The selection of the most appropriate rule will be explained later within the expla-
nation of LearnRule procedure.



important goals come into place in later stages of the solution plan, and hence
we select as the best seed example the one with lowest heuristic value in the
current examples.

3.2 Procedure: DiscoverGoals

Search for the best goal in a given position follows the well known star-search
strategy, which is often used in separate-and-conquer rule learning algorithms
[2]. It starts with an empty goal and sequentially adds subgoals until we find a
good goal. A goal can have a maximum of five subgoals, and if the algorithm
reaches this limit, while goal is still bad, then this procedure returns “goal not
found”. If there are several good goals having the same number of subgoals, then
the method returns all good goals.

3.3 Procedure: LearnRule

LearnRule procedure first creates for each provided goal a new data set contain-
ing all positions from ES, where this goal is achievable. Each position in the
new data set is labeled as either good goal or as bad goal. If several goals were
provided, the best goal is selected according to the following criteria:

i(g) =
num. of examples with good goal

[max(h)− h(seedState)]2
(2)

where max(h) is the maximum heuristic value of examples where goal is achiev-
able. Afterwards, LearnRule procedure learns a rule for the best goal. Its precon-
ditions separate states where a goal is good from those where it is not. We use
CN2 [1] to learn one rule only, where its conditions must cover the seedState.

4 Argument-Based Extension of Gabriel Algorithm

Argument Based Machine Learning (ABML) [3] is machine learning extended
with certain concepts from argumentation. Arguments in ABML are a way to
enable domain experts to provide their prior knowledge about a specific learning
example that seems relevant for this case and does not have to be valid for the
whole domain. This approach greatly reduces the difficulty that experts face
when they try to articulate their background knowledge.

An argument can be regarded as partial explanation of a single learning ex-
ample. A learning example explained with an argument is called an argumented
example. An ABML method is then required to induce a theory that uses given
arguments to explain the argumented examples. Thus, arguments constrain the
combinatorial search among possible hypotheses, and also direct the search to-
wards hypotheses that are more comprehensible in the sense of expert’s back-
ground knowledge. When an ABML method is used without arguments, it acts
as a normal machine learning method.

In goal-based rule learning, ABML is a favorable approach because of three
reasons:



– Arguments will prevent learning rules describing some strange effects occur-
ring only in the given training data set.

– Induced rules will suggest goals more in line with the experts’s thinking.
– Experts find it much easier to provide goals for particular problem states

than give exact rules applicable to the complete task.

The structure of an argument depends on the learning problem. In goal-based
rule learning, an argument has the following structure: “Goal g is good in state s
because conditions”. For example, a concrete argument in a chess-ending could
be: “In this position, a good goal is to decrease distance between kings, because
black king is sufficiently constrained”.

In ABML, the method should induce such a hypothesis that uses given argu-
ments while explaining particular examples. A rule in goal-based rule learning
explaining an argumented problem state should therefore also use its arguments,
which is achieved by having a goal and conditions from the argument as a part of
the final rule. This can be achieved by a redefinition of the rule covering relation.
Let a learning example in AB goal-based rule learning be a triple: (attributes,
argGoal, argConditions). Then, a rule R AB-covers an example if:

– the preconditions of rule R are true for the example,
– goal of R is achievable in state s,
– argGoal is a subset of rule R’s goal, and
– argConditions is a subset of rule’s preconditions.

Along to the new covering relation, in order to enable efficient learning with
arguments, we implemented two other changes in the algorithm:

– If seedState has an argument, then DiscoverGoal starts with argGoal and
not an empty goal.

– If seedState does not have an argument, then DiscoverGoal first tries to
apply any of the goals from arguments given to other examples. If none of
the goals is good, then it searches for a goal the same as original Gabriel.

– If seedState has an argument, the LearnRule procedures uses ABCN2 [3]
instead of classical CN2, where argConditions are used as reasons.

The ABCN2 method used in LearnRule procedure is an argument-based
extension of the CN2 method [1] that learns a set of unordered probabilistic
rules from argumented examples. In ABCN2, the theory (a set of rules) is said
to explain the examples using given arguments, when there exists at least one
rule for each argumented example that contains at least one positive argument
in the condition part. Since the method here learns only a single rule at a time,
the requirement is that the final rule needs to contain argConditions in its
preconditions.

5 ABML Refinement Loop: Selection of Critical
Examples

In argument-based approach, experts provide their prior knowledge in the form
of arguments for some of the learning examples. Asking them to give arguments



to the whole learning set is not likely to be feasible, because it would require too
much time and effort. The following loop describes the skeleton of the procedure
that picks out critical learning examples that should, when explained, the most
improve the quality of learned rules:

1. Learn a set of rules with Gabriel.
2. Find the most critical state and present it to the expert.
3. Expert explains the example; the explanation is encoded in arguments and

attached to the learning example.
4. Return to step 1 if critical position was found.

With respect to the second step in the loop, there are two types of critical
states: type A states are critical states, where rules do not suggest any goals (no
rules have triggered) and type B are states, where rules suggest a bad goal.

5.1 Explaining Type A Critical States

The explanation of a type A critical state contains the following five steps:

Step 1: Explaining critical state. Expert provides an argument “Goal be-
cause Reasons”. This argument is then added to the critical state.

Step 2: Evaluating goal in argument. Method first classifies the goal in the
argument into bad, good, or not-achievable.

– If goal is not-achievable, expert is asked to change the argument. Return
to Step 1.

– If goal is good, we proceed to Step 3.
– If goal is bad, then the method shows to the expert the critical sequence

of moves that achieves the goal and at the same time increases heuristic
value. The expert can accept the sequence of moves as good, although
heuristic value is increased (continue to Step 3), or improves the initial
goal and returns to Step 1.

Step 3: Discovering counter states. GABRIEL learns a rule “ IF cond THEN Goal =
g”, where the critical state is used as a seedState. Counter states are posi-
tions covered by the rule, where the learned goal is classified as bad. If there
are no such positions, we move to Step 4. Otherwise, the counter state s with
highest q(g, s) (see evaluation of goal section) is denoted as a key counter
state. This state is presented to the expert.

Step 4: Improving argument. If a key counter example is found, the expert
has three possible solutions:

– If he or she thinks that the goal in the key counter state is admissible,
then we automatically accept also all other counter examples and move
to Step 5.

– If the goal in the key counter position is not acceptable, the expert can
improve the initial argument. Return to Step 2.

– If the goal in the key counter state is not acceptable, but the expert
cannot improve the initial argument, then we provide the next counter
example to the expert.



Step 5: Validating learned rule. We show the learned rule to the expert. If
the rule seems good, we conclude the explanation process of the example. If
there is a condition in preconditions of the rule that expert finds irrelevant or
even wrong, then we can prevent adding this condition to the preconditions
of the rule, when this example is used as a seedState. Return to Step 2.

5.2 Explaining Type B Critical States

In a Type B critical state the rules suggest a bad goal. Here, the expert is first
asked whether the current goal is acceptable or should it be changed. If the
current goal is acceptable, we continue to the next critical state, otherwise the
critical state is explained in the same way as a Type A critical state.
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3. Martin Možina, Jure Žabkar, and Ivan Bratko. Argument based machine learning.
Artificial Intelligence, 171(10/15):922–937, 2007.

4. J. Wnek and R. S. Michalski. Hypothesis-driven constructive induction in aq17-hci:
A method and experiments. Machine Learning, 14(2):139–168, 1994.


